Avaliação da Execução do Plano de Trabalho 1 do ano de 2013

<u>Pontos Positivos:</u> Na execução do meu Plano de Trabalho percebi que os alunos interagiram bastante.

Na construção do cartaz do diagrama dos Conjuntos Numéricos os alunos participaram com bastante interesse.

Ao montarmos a reta numérica os alunos interagiram e conseguiram colocar seus números utilizando uma calculadora.

A leitura de textos envolvendo os radicais também foi de grande importância para uma aprendizagem significativa

E com a utilização de todos esses recursos os alunos realizaram exercícios dos Saerjinhos anteriores com mais dedicação e puderam observar a importância de aprender radicais.

O que sempre podemos concluir é que quando aprendemos algo e sabemos onde iremos usar tudo se torna mais fácil.

<u>Pontos Negativos</u>: O tempo é muito curto para a realização de todas as tarefas propostas. Eles conseguem entender, mas falta praticar mais através de atividades, pois é assim que conseguimos ver se realmente eles conseguiram entender.

Tive que mostrar aos alunos como usar a calculadora, pois muitos sentiram dificuldades.

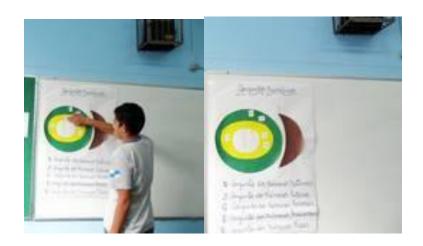
<u>Alterações:</u> Não alterei nada na realização do Plano de Trabalho, só acrescentei algumas atividades com radicais.

<u>Abordagem ao tema:</u> Eu abordei o trabalho utilizando construção de diagramas e retas numéricas. Para o trabalho com radicais, utilizei vários exercícios associando-os a Geometria.

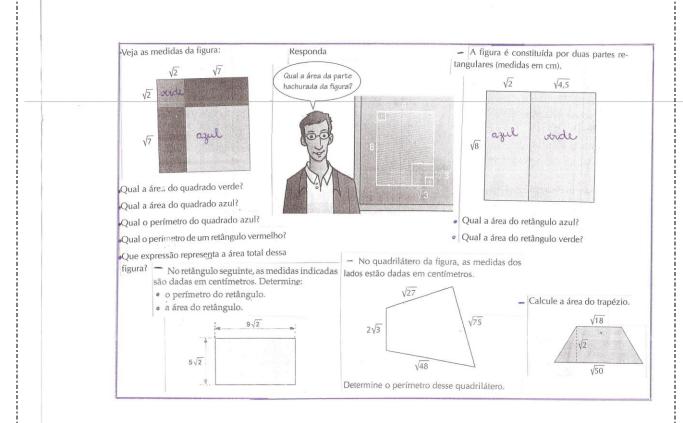
<u>Pré-requisitos:</u> Preparar uma aula dinâmica e atrativa para chamar a atenção do aluno para que juntos possam atingir o objetivo proposto.

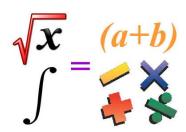
Elaboração da aula: Procurei elaborar uma aula dinâmica e de fácil entendimento para os alunos e também procurei contextualizar o conteúdo trabalhando.

<u>Metodologia utilizada:</u> Utilizei atividades práticas para melhor entendimento do conteúdo.

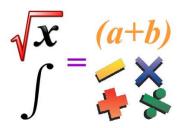

<u>Avaliação:</u> A avaliação foi feita em minha opinião corretamente, pois avaliei meus alunos a todo o momento observando suas dificuldades, seus raciocínios, sua participação ativa durante as atividades.

E fazendo uma avaliação do meu trabalho fiquei bastante satisfeita com o resultado, mas ainda preciso de mais retorno por parte dos alunos esperando que eles gostem de aprender, sintam vontade em crescer profissionalmente.


Fotos dos alunos realizando as atividades do Plano de Trabalho 1.

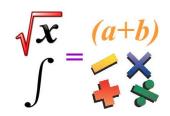


Também acrescentei uma folha de atividades escritas para fixar o trabalho com os radicais.


Matemática Números Reais e Radiciação

9° ano 1°Bimestre/2013

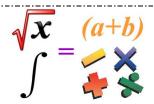
Plano de Trabalho


Cursista: Luciana Medeiros Paschoal

Tutora: Quedma Ramos dos Santos

Sumário

Introdução3)
Desenvolvimento4	
- Atividade 14	ļ
- Atividade 26	;
- Atividade 31	1
- Atividade 41	3
Avaliação1	6
Fontes de pesquisa1	

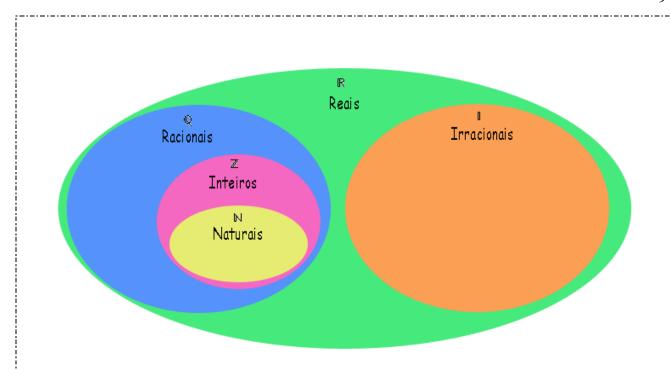

Introdução

Nos dias de hoje é fundamental que as práticas e os conteúdos dados em sala de aula estejam em sintonia com o mundo que vivemos para que a educação não seja algo tão distante da vida dos alunos.

O aluno precisa conhecer todos os conjuntos de forma prática para poder trabalhar legal com as raízes.

Com a apresentação das propriedades e operações fundamentais envolvendo os radicais, pretende-se que o aluno adquira habilidades suficientes para trabalhar com radicais no Ensino Médio.

Meu objetivo principal nesse trabalho é realmente trabalhar de forma a fazer com que os alunos obtenham conhecimento para trabalhar com os conjuntos e radicais com naturalidade.



Desenvolvimento

Atividade 1

- HABILIDADE RELACIONADA: Trabalhar com os Conjuntos Numéricos.
- PRÉ-REQUISITOS: Realizar atividades práticas para que os alunos saibam qual número pertence a qual conjunto.
- TEMPO DE DURAÇÃO: 100 min
- RECURSOS EDUCACIONAIS UTILIZADOS: Cartaz com os conjuntos numéricos e papéis com os números.
- ORGANIZAÇÃO DA TURMA: O trabalho será realizado em conjunto com toda a turma embora cada aluno deverá colocar o seu número.
- <u>- OBJETIVO:</u> Relembrar os Conjuntos Numéricos utilizando atividades práticas.
- METODOLOGIA ADOTADA: Trabalhar através de um diagrama os conjuntos numéricos.

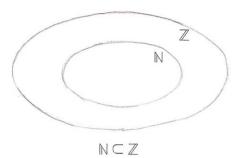
Os alunos receberão números que deverão colocar no diagrama. Todos deverão participar da atividade para que eu possa avaliá-los.

Como as aulas começaram no dia 18/02, ainda não deu tempo de tirar as fotos, mas na próxima semana vou tirar e colocar no fórum.

Atividade 2

- HABILIDADE RELACIONADA: Trabalhar os Conjuntos
 Numéricos na reta numérica.
- PRÉ-REQUISITOS: Representar sem dificuldades os números na reta numérica.
- TEMPO DE DURAÇÃO: 100 min
- RECURSOS EDUCACIONAIS UTILIZADOS: Atividades na apostila e confecção de uma reta numérica de barbante.
- ORGANIZAÇÃO DA TURMA: Atividade coletiva.
- OBJETIVO: Saber localizar na reta numérica os números estudados.
- METODOLOGIA ADOTADA: Será entregue uma apostila com tudo que foi trabalhado na prática.

Conjuntos Numéricos


Ao longo de sua história, o ser humano sentiu a necessidade de controlar e quantificar o seu rebanho, seus objetos, os membros de sua comunidade. Por causa dessa necessidade foram criados números que hoje utilizamos para representar contagens, os chamados **números naturais**. Veja como podemos representar o conjunto dos números naturais.

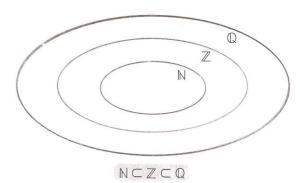
$$\mathbb{N} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ...\}$$

Os números naturais, no entanto, não foram suficientes para dar conta de novas necessidades que surgiram com o passar dos anos, entre elas, situações em que era preciso expressar "falta" ou "dívida". Por isso foram criados os números negativos que, com os números naturais, formam o conjunto dos **números inteiros**, representado por \mathbb{Z} .

$$\mathbb{Z} = \{..., -7, -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, 7, ...\}$$

Qualquer número natural também é um número inteiro. Observe como podemos representar a relação entre o conjunto dos números naturais (\mathbb{N}) e o conjunto dos números inteiros (\mathbb{Z}) por meio de um diagrama.

Além do conjunto dos números naturais e inteiros, há também o conjunto dos **números racionais**, que indicamos por \mathbb{Q} . Os números racionais são obtidos por meio da divisão de dois números inteiros e podem ser expressos tanto na forma fracionária como na forma decimal. No caso de forma fracionária, o denominador deve ser diferente de zero.


Veja alguns números racionais escritos na forma de fração e na forma decimal.

•
$$-\frac{5}{2} = -2.5$$
 • $\frac{13}{3} = 4.333...$ • $\frac{3}{8} = 0.375$ • $-\frac{19}{16} = -1.1875$

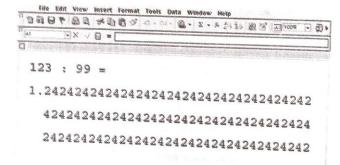
Os números inteiros também são considerados números racionais, pois qualquer número inteiro pode ser obtido pela divisão de dois números inteiros. Podemos obter –2 e 4, por exemplo, efetuando várias divisões. Observe algumas delas.

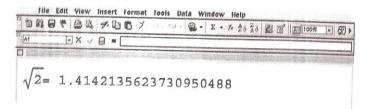
$$\bullet - \frac{2}{1} = -2$$
 $\bullet - \frac{8}{4} = -2$ $\bullet - \frac{4}{2} = -2$ $\bullet \frac{16}{4} = 4$ $\bullet \frac{28}{7} = 4$ $\bullet \frac{12}{3} = 4$

No diagrama abaixo está representada a relação entre os conjuntos dos números naturais (\mathbb{N}) , inteiros (\mathbb{Z}) e racionais (\mathbb{Q}) .

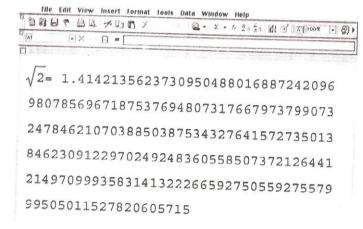
Ao dividirmos dois números inteiros, podemos obter:

- um número inteiro quando a divisão é exata;
- um número decimal com uma quantidade limitada de casas decimais;
- um número decimal de infinitas casas decimais com algarismos que se repetem obedecendo a um padrão, chamado dízima periódica.


Observe os cálculos realizados em uma calculadora científica.



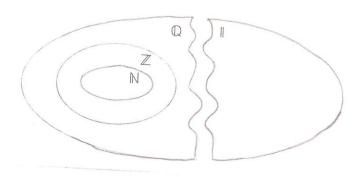
No 3.º visor aparece o resultado de 123 : 99 com nove casas decimais. Podemos exibir mais casas decimais no resultado desse cálculo utilizando um programa de computador.



Os algarismos 2 e 4 se repetem infinitamente na representação do resultado da divisão de 123 por 99. Nesse caso, dizemos que o resultado de 123 : 99 apresenta dízima periódica.

Agora, observe o resultado de $\sqrt{\, {\it 2} \,}$ representado com 20 algarismos.

Podemos aumentar a representação decimal para 200 algarismos ou mais que eles não serão periódicos, ou seja, não apresentarão padrão.



Números com essa característica pertencem ao conjunto dos **números irracionais**, que representamos por $\|.$

Veja a seguir alguns números irracionais.

$$\sqrt{3}$$
 = 1,732050807... $\sqrt{7}$ = 2,645751311... π = 3,141592653... $\frac{\sqrt{5}}{2}$ = 1,118033988...

No diagrama abaixo está representada a relação entre os conjuntos de números naturais (\mathbb{N}) , inteiros (\mathbb{Z}) , racionais (\mathbb{Q}) e irracionais (\mathbb{I}) .

Associe cada um dos números apresentados abaixo a uma das letras indicadas na reta numérica. Para isso, escreva em seu caderno a letra e o número correspondentes. No caderno, escreva em ordem crescente os números que aparecem em cada quadro. 0,3 $-\sqrt{10}$ -0,35 7,75 0 1,3 De acordo com a reta abaixo, copie os itens em seu caderno, substituindo cada 🟿 por \in ou otin• 1 R • C Z • E R • G 🎆 N · A MN • J 🖺 Q • H 🗷 Q • F 🐺 风 • D 💹 N • B 🛮 Z

Atividade 3

- HABILIDADE RELACIONADA: Trabalhar radicais com um texto que mostrará a utilidade de saber trabalhar com os radicais.
- PRÉ-REQUISITOS: Que o aluno saiba que é importante estudar determinado conteúdo para a sua vida.
- TEMPO DE DURAÇÃO: 100 min
- RECURSOS EDUCACIONAIS UTILIZADOS: Texto e o uso da calculadora.
- ORGANIZAÇÃO DA TURMA: Trabalho individual.
- <u>- OBJETIVO:</u> Fazer com que o aluno entenda porque estuda determinado conteúdo.
- METODOLOGIA ADOTADA: Texto trazendo uma informação para o aluno.

A medida do tempo

O que é o tempo? Eis uma pergunta que não é fácil de responder, apesar da freqüência com que usamos esta palavra, mesmo sem nos darmos conta ("quanto tempo já passou", "há muito tempo", ...) de Aristóteles a Einstein, foram dadas inúmeras definições do conceito de tempo. Começando com especulações altamente filosóficas, passou-se a considerar o problema sob um ângulo puramente científico.

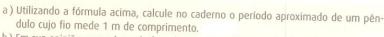
Para a Física, o que importa é saber medir a duração temporal de um fenômeno. Isso significa poder compará-la com a duração de outro fenômeno, que é escolhida como unidade de medida.

Na natureza, há fenômenos particularmente adequados para servir de unidade de medida de duração. Por exemplo, o alternar do dia e da noite, causado pela rotação da Terra sobre si mesma, ou o movimento aparente da Lua. Esses são fenômenos sempre iguais, que se repetem com ritmo regular, e por essa razão são chamados fenômenos periódicos.

[...] Os relógios são instrumentos que medem a duração (ou, como se diz habitualmente, o tempo) a partir de fenômenos periódicos. É o que ocorre quando aproveitamos a oscilação regular de um pêndulo para movimentar os ponteiros de um relógio. Esse é um típico exemplo de movimento periódico. Se as oscilações não forem muito amplas, o tempo empregado para completá-las é sempre igual. [...]

O péndulo é utilizado para medir intervalos de tempo, porque suas oscilações (quando pequenas) são extremamente regulares. [...]

AMALDI, Ugo. *Imagens da Física*: as idéias e as experiências, do pêndulo aos quarks. São Paulo: Scipione, 1995.


O esquema ao lado representa um pêndulo simples.
O tempo que o pêndulo leva para sair do ponto A, chegar ao ponto B e voltar para o ponto A é chamado **período**.
Podemos calcular o período de um pêndulo, utilizando a seguinte fórmula:

$$T = 2\pi \sqrt{\frac{L}{g}}$$

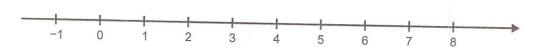
T: período do pêndulo, em segundos L: comprimento do fio do pêndulo, em metros

π: número pi → π ≅ 3,14

g: aceleração da gravidade → g ≅ 9,8 m/s²

 b) Em sua opinião, como é possível medir o tempo utilizando um pêndulo como o citado no item a?

MÓDULO


Atividade 4

- HABILIDADE RELACIONADA: Trabalhar com questões dos Saerjinhos anteriores envolvendo o cálculo de raízes.
- PRÉ-REQUISITOS: Mostrar que é muito importante estudar os radicais.
- TEMPO DE DURAÇÃO: 100 min
- RECURSOS EDUCACIONAIS UTILIZADOS: Questões tiradas dos Saerjinhos anteriores e calculadora.
- ORGANIZAÇÃO DA TURMA: Trabalho feito em dupla.
- OBJETIVO: Realizar diversas atividades para fixação do conteúdo.

- METODOLOGIA ADOTADA:

Atividades na folha.

Observe a reta numérica abaixo.

O número √7 está localizado entre

- A) 7 e 8.
- B) 3 e 4.
- C) 2 e 3.
- D) 0 e 1.

Resolva a operação abaixo.

$$\sqrt{5} - \sqrt{3}$$

O valor aproximado dessa operação é

- A) 0,5
- B) 1,0
- C) 1,5
- D) 2,0

Resolva a expressão abaixo.

$$(\sqrt{2})^2 + 4\sqrt{9} - \frac{1}{2}$$

O resultado dessa expressão é

- A) 6,5
- B) 8,5
- C) 13,5
- D) 15,5

Observe a operação abaixo.

$$\sqrt{18} - \sqrt{8}$$

O resultado aproximado dessa operação é

- A) 1,41
- B) 3,16
- C) 5,00
- D) 7,05

Qual dos números abaixo representa 36%?

- A) 0,036
- B) 0,36
- C)3,6
- D) 36

Renata comprou um carro que custava R\$ 30.000,00. Para isso, ela deu uma entrada de 75% do valor do carro e financiou o restante.

Quanto Renata financiou nessa compra?

- A) R\$ 27.750,00
- B) R\$ 22.000,00
- C) R\$ 7.500,00
- D) R\$ 2.250,00

Observe a reta numerada abaixo.

Nessa reta, o ponto P corresponde ao número

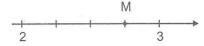
- A) $\frac{1}{2}$
- B) $\frac{2}{3}$
- C) $\frac{3}{2}$
- D) $\frac{7}{3}$

Observe a expressão abaixo.

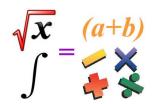
$$2\sqrt{5}+\sqrt{3}$$

O valor dessa expressão, com aproximação de duas casas decimais, é

- A) 3,87
- B) 4,89
- C) 5,66
- D) 6,19


Observe a reta numérica abaixo dividida em segmentos de mesma medida.

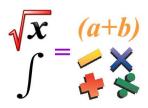
O ponto que melhor representa o número $\sqrt{7}\,$ é


- A) S.
- B) R.
- C) Q.
- D) P.

Observe a reta numérica abaixo. Essa reta está dividida em segmentos de mesma medida.

Qual é o número que corresponde ao ponto M?

- A) 2,30
- B) 2,50
- C) 2,55
- D) 2,75


Avaliação

A avaliação desse plano de estudo acontecerá a todo o momento das atividades práticas e teóricas observando a participação e o comprometimento dos alunos na realização da atividade proposta.

Na realização das atividades práticas observarei o envolvimento dos alunos na realização das mesmas.

As atividades do Saerjinho também serão analisadas procurando observar se o aluno se esforçou para realizá-la ou se chutou uma das opções.

Avaliar é bem complicado e por isso não podemos perder nenhuma oportunidade de estar avaliando-os.

REFERÊNCIAS BIBLIOGRÁFICAS

GIOVANNI, Ruy jr; CASTRUCI, Benedito. **A conquista da Matemática.** Ed. Renovada – São Paulo, FTD, 2009

BONJORNO, José Roberto; OLIVEIRAS, Ayrton; BONJORNO, Regina Azenha. **Matemática Fazendo a Diferença.** Ed. 1ª – São Paulo: FTD, 2009

ANDRINI, Maria José Vasconcellos, **Praticando.** Coleção Atualizada – São Paulo: Editora do Brasil, 2002

BIANCHINI, Edwaldo. **Matemática.** São Paulo: Editora Moderna, 2006

RIBEIRO, Jackson; SOARES, Elizabeth. **Matemática.** São Paulo: Editora Scipione, 2010

Neste Plano de Trabalho utilizei as atividades que eu já havia planejado. Mas adorei os roteiros de ação e ainda vou usá-los, como o trabalho com a música.