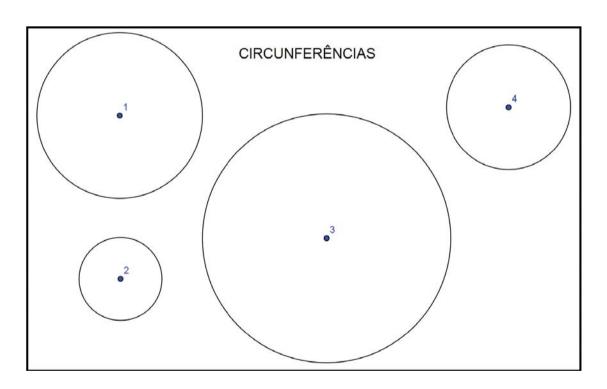
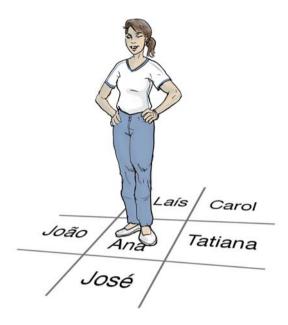
PRIMEIRA ETAPA


COMPARTILHAR IDEIAS

Atividade • π e Ângulos – Vamos entender?

ATIVIDADE 1

Para iniciar, vamos completar a tabela de acordo com o formulário de circunferências. Para isso, deve-se seguir as próximas orientações .


- Meça as circunferências da ficha (com uma casa decimal), envolvendo-as com barbante e, a seguir, esticando-os sobre a régua verifique o seu comprimento. Por fim você deve anotar o resultado na coluna da circunferência.
- Em seguida, meça o diâmetro, também com uma casa decimal, de cada uma delas e insira o resultado na tabela.
- Agora, utilizando uma calculadora, você deve dividir, em cada linha da tabela, o comprimento da circunferência pelo seu diâmetro e anotar o resultado na última coluna da tabela. Utilize duas casas decimais na resposta final.

CIRCUNFERÊNCIAS	COMPRIMENTO	DIÂMETRO	COMPRIMENTO DIÂMETRO
1			
2			
3			
4			

ATIVIDADE 2

Considere a seguinte situação: Em uma sala de aula, um professor posicionou cinco alunos e Ana foi posicionada de frente para José.

- a. Para iniciar a atividade, o professor pediu que Ana girasse uma volta completa para a esquerda. Após o giro, Ana ficou de frente para quem?
- b. Depois, o professor solicitou a Ana que girasse meia-volta para a esquerda. Após este giro, ela está de frente para quem?
- c. Em seguida, o professor pediu a Caroline que, da posição em que estava, girasse um quarto de volta para a direita. E agora, Ana ficou de frente para quem?
- d. O professor fez a seguinte pergunta: Quanto Ana deve girar para ficar de frente para José novamente?
- e. A nova pergunta do professor foi a seguinte: E para ficar de frente para a Carol, a partir de sua última posição, quanto Ana deve girar?

a. Quantas vezes o raio cabe numa circunferência de raio r? Para realizar esta tarefa você deve utilizar a tabela a seguir. Utilize o barbante para medir o raio da circunferência e veja quantas vezes o comprimento desse barbante será utilizado para completar uma volta na circunferência.

CIRCUNFERÊNCIA	NÚMERO DE VEZES QUE O RAIO CABE NA CIRCUNFERÊNCIA	COMPRIMENTO (2πr)
1		
2		
3		
4		

- b. Agora responda: quantas vezes o raio cabe em $\frac{1}{2}$ volta?
- c. E quantas vezes o raio cabe em $\frac{1}{4}$ volta?
- d. Por fim, quantas vezes o raio cabe em $\frac{3}{4}$ volta?

Terceira Etapa

FIQUE POR DENTRO!

ATIVIDADE • O JOGO DOS CÍRCULOS

Nesta atividade, vocês irão encontrar valores equivalentes em radianos para uma medida em graus (e vice versa), e vão aprender como transformar os valores obtidos para uma unidade de comprimento linear (metros). Aqui, é descrita uma situação em que professores montam uma gincana e realizam questionamentos sobre movimentos angulares e seus respectivos comprimentos.

Vamos à atividade?

2. Se, em sua rodada, o jogador da equipe (B) se mover $\frac{2\pi}{3}$ radianos, quantos graus o jogador da equipe (A) deverá percorrer? Essa distância equivale a quantos metros?

3. Se cada acerto vale 1,0 ponto, observe as tabelas a seguir e diga, nessas quatro rodadas, qual equipe obteve mais pontos.

			ACERTOU? (SIM/NÃO)
Rodada 1	Equipe A disse 90°	Equipe B respondeu $\frac{\pi}{2}$	
Rodada 2	Equipe B disse $\frac{7\pi}{6}$	Equipe A respondeu 180°	
Rodada 3	Equipe A disse 270°	Equipe B respondeu $\frac{3\pi}{2}$	
Rodada 4	Equipe B disse $\frac{5\pi}{3}$	Equipe A respondeu 300°	

QUARTA **E**TAPA

Quiz

QUESTÃO

A figura a seguir mostra um relógio de pêndulo. Esse pêndulo tem um comprimento de 1,2 m, e conforme o tempo passa, fica oscilando entre B e C, segundo um ângulo central de 15°.

QUINTA **E**TAPA

Análise das Respostas ao Quiz

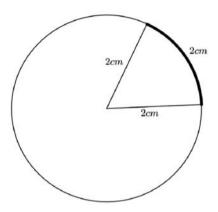
ETAPA FLEX

PARA SABER +

Prezado professor,

Indicamos, a seguir, alguns links que contêm algumas atividades relacionadas às habilidades trabalhadas nessa dinâmica.

1. **WebCalc**: esta página contém uma calculadora (on line) que faz conversões de medidas de ângulo para diversas unidades, entre elas o grau e o radiano.


Disponível em:

- http://www.webcalc.com.br/frame.asp?pag=http://www.webcalc.com. br/conversoes/angulo.html
- 2. **Vídeo**: este vídeo, bem curto (3min29s), contém explicações sobre como converter medidas em graus para radianos, e pode ser utilizado pelos alunos a título de revisão/complementação.

QUESTÃO 2

Na circunferência a seguir, o arco destacado mede 2 cm. Quanto vale a medida do ângulo central a ele associado?

- a. 1 rad.
- **b.** 2 rad.
- c. 12 rad.
- d. 60 rad.

QUESTÃO 3

Um atleta treina correndo em torno de uma praça circular, cujo raio mede 60 metros. Após percorrer, nessa praça, um arco de 1,5 radianos, qual será a distância percorrida em metros?

- a. 60 m.
- **b.** 90 m.
- c. 150 m.
- d. 240 m.