FORMAÇÃO CONTINUADA EM MATEMÁTICA

FUNDAÇÃO CECIERJ/ CONSÓRCIO CEDERJ

Matemática 9° <mark>Ano - 4° Bimestre/2012</mark>

Plano de Trabalho II

Assunto: Políg<mark>onos Regulares e Área de Figuras</mark> Planas

Sumário

Introdução	.05
Desenvolvimento	.06
Anexos	.15
Avaliação	.19
Referências Bibliográficas	.20

FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA

FUNDAÇÃO CECIERJ/SEEDUC - RJ

COLÉGIO ESTADUAL NICOLÁO BASTOS FILHO

PROFESSORA: DERLI ALEIXO CARVALHO ONOFRE

MATRÍCULA: 0914411-4

SÉRIE: 9º ANO – ENSINO FUNDAMENTAL – GRUPO 1

TUTOR(A): ANA PAULA CABRAL COUTO PEREIRA

AVALIAÇÃO DA IMPLEMENTAÇÃO DO PLANO DE TRABALHO II

Derli Aleixo Carvalho Onofre donofre@prof.educacao.rj.gov.br

PONTOS POSITIVOS

Com este plano de trabalho a partir dos procedimentos adotado para calcular perímetro e área pude verificar a facilidade de construção dos conceitos através da visualização de material concreto e objetos do dia a dia dos alunos, pois esses conceitos eram construídos ao executarem as atividades de forma

prazerosa.

PONTOS NEGATIVOS

Apesar de não ter trabalhado com nenhum software como, por exemplo, o Geogebra que gostaria de tê-lo introduzido ao meu plano, pois ainda não o temos instalado nos computadores da escola, não há pontos negativos que

mereçam destaques.

ALTERAÇÕES

Não será necessário fazer nenhuma alteração, pois o Plano de Trabalho foi elaborado ao nível da turma, com atividades dentro da capacidade de assimilação dos conteúdos, apesar dos transtornos de final de ano os objetivos propostos foram alcançados.

IMPRESSÕES DOS ALUNOS

3

Em toda atividade mostraram interesse e não tiveram dificuldades ao realizá-las, acharam tudo muito fácil, comentaram que já tinham visto este conteúdo ano passado. Gostaram muito do Geoplano e disseram que iam pedir a professora de artesanato para construir com eles. Um aluno disse que sua mãe quer colocar piso na varanda, e agora saber calcular e que vai medir a varanda pra ver quantos metros de piso vai gastar. Outro aluno (sujeito a repetir o 9º ano) disse que essa matéria é muito fácil, pois conseguiu entendeu o que é perímetro e área que tanto já viu falar, mas ainda não tinha entendido como calculava.

FORMAÇÃO CONTINUADA PARA PROFESSORES DE MATEMÁTICA FUNDAÇÃO CECIERJ/SEEDUC – RJ COLÉGIO ESTADUAL NICOLÁO BASTOS FILHO

PROFESSORA: DERLI ALEIXO CARVALHO ONOFRE

MATRÍCULA: 0914411-4

SÉRIE: 9º ANO – ENSINO FUNDAMENTAL – GRUPO 1
TUTOR(A): ANA PAULA CABRAL COUTO PEREIRA

PLANO DE TRABALHO SOBRE POLÍGONOS REGULARES E ÁREAS DE FIGURAS PLANAS

Derli Aleixo Carvalho Onofre donofre@prof.educacao.rj.gov.br

INTRODUÇÃO

Acredita-se que os professores de Matemática tanto do ensino fundamental e médio, deparam-se com inúmeras dificuldades e também com a falta de motivação dos alunos para entenderem assuntos da Matemática, principalmente temas relacionados à Geometria.

Podemos encontrar diversas formas poligonais que existem em nosso cotidiano e até a nossa volta, como por exemplo, ao olharmos para as paredes, janelas, quadros, o revestimento do piso, observamos diversas formas poligonais.

Este plano de trabalho, então propõe como alternativa, uma estratégia de aprendizagem com o objetivo de repensar o modo de trabalhar este assunto com o tema: Polígonos regulares e áreas de figuras geométricas planas.

De início será utilizada a malha quadriculada como motivação no cálculo de área e perímetro das figuras geométricas planas, após será apresentada algumas definições e as principais relações para o cálculo de área e perímetro dos polígonos e do círculo de acordo com a situação.

DESENVOLVIMENTO

ATIVIDADE 1- Áreas e perímetros de figuras planas.

HABILIDADE RELACIONADA: H23 - Resolver problemas envolvendo a noção

de perímetro de figuras planas, com ou sem malhas quadriculadas.

H 26 - Resolver problemas envolvendo noção de área de figuras planas, com ou

sem malhas quadriculadas.

PRÉ-REQUISITOS: Conceito de medida e unidade de medida

TEMPO DE DURAÇÃO: 100 minutos

RECURSOS EDUCACIONAIS UTILIZADOS: Folha de atividades, papel

quadriculado, Geoplano e lápis.

ORGANIZAÇÃO DA TURMA: Turma disposta em pequenos grupos (3 a 4

alunos), propiciando trabalho organizado e colaborativo.

OBJETIVOS: Apresentar ao aluno a diferença conceitual entre perímetro e área

de uma figura plana, chamando a atenção para a independência dessas

grandezas.

METODOLOGIA ADOTADA

Pedir aos alunos que apontem diversas formas e dimensões presentes ao

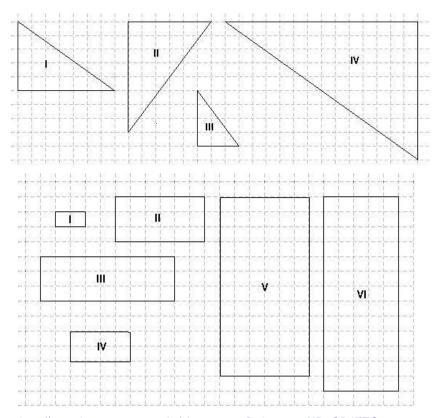
nosso redor que se assemelham às figuras geométricas que conhecem. A estas

formas damos o nome de polígonos.

Para obter o perímetro de uma figura, antes de usar o metro como

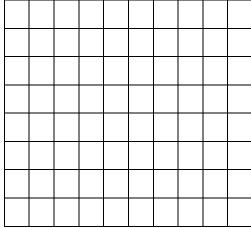
instrumento de medição, os alunos utilizarão as unidades de medidas da malha

quadriculada. No caso da área, é preciso, inicialmente, determinar áreas de


6

superfícies traçadas em malha quadriculada, e só depois fazer esse cálculo por meio de medidas padronizadas (cm², m² e km²).

É importante compreender que a medida da área de uma figura varia de acordo com a unidade de medida considerada e que deve haver uma unidade padronizada de medida. Para grandes áreas, utilizamos o quilômetro e o quilômetro quadrado. Na fixação do aprendizado, podem-se explorar, com os alunos, a área da cidade e do estado onde moram, a área do Brasil, etc.


De início não vamos reduzir o estudo da área à dedução e à aplicação de fórmulas, como área do quadrado, do retângulo, do paralelogramo e do triângulo, mas chegar a elas a partir da observação das atividades com papel quadriculado e no Geoplano, instrumentos para trabalhar os conceitos de perímetro e de área.

Em uma folha quadriculada, utilizar um de seus lados como unidade de medida de comprimento e mostrar diferentes figuras desenhadas nesse quadriculado. Comparar e descobrir qual a figura que tem o maior perímetro, o menor, e quais têm o mesmo perímetro.

Fonte: http://crv.educacao.mg.gov.br/sistema_crv/index.aspx?ID_OBJETO

A figura abaixo representa malha quadriculada.

Amostra de malha quadriculada

Fonte: Imagem feita pelo autor

- Pegue uma folha de papel quadriculado, desenhe e pinte três retângulos diferentes, de maneira que cada um deles contenha 24 quadradinhos inteiros.
 Observe se os retângulos desenhados pelos seus colegas são iguais aos seus.
- 2. Considere como unidade de perímetro (u.c.) o lado de um quadradinho desta folha e, como unidade de área (u.a.), a área de um quadradinho. Preencha a tabela com as áreas e os perímetros de cada retângulo desenhado anteriormente.

	Área (u.a.)	Perímetro (u.c.)
Retângulo 1		
Retângulo 2		
Retângulo 3		

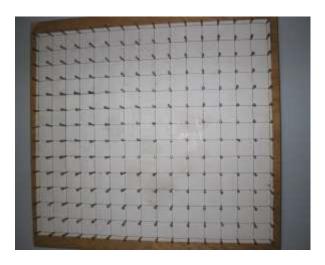
3. Desenhe e pinte no papel quadriculado três figuras quaisquer que possuam área 12 u.a. e preencha a tabela com seus perímetros.

	Area (u.a.)	Perímetro (u.c.)
Figura 1	12	
Figura 2	12	
Figura 3	12	

4. Agora, desenhe e pinte três figuras quaisquer que tenham perímetro 30 u.c e descubra as suas áreas registrando esses valores na tabela abaixo.

	Área (u.a.)	Perímetro (u.c.)
Figura 1		30
Figura 2		
Figura 3		

5. Os desenhos dos seus colegas são iguais aos seus? E as áreas das figuras desenhadas por eles? Converse com seus colegas o que vocês podem concluir a partir disso.

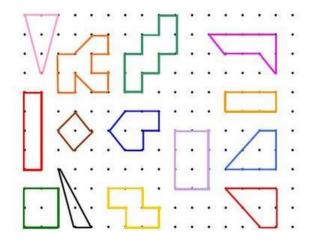

Agora o aluno poderá observar que pode haver duas ou mais figuras com a mesma área e perímetros diferentes, e que a situação contrária também poderá ocorrer, isto é, figuras com o mesmo perímetro podem ter áreas diferentes.

- 6. Agora um desafio! Usando a régua, construa figuras:
- a) Com 12 unidades de perímetro e 6 de área;
- b) Com 8 unidades de perímetro e 4 de área;
- c) Com 12 unidades de perímetro e 5 de área

Geoplano

A palavra geoplano vem do inglês "geoboards" ou do francês "geoplans" onde "geo" vem de geometria e "plan" significa plano, tábua, tabuleiro ou superfície plana. Um dos primeiros trabalhos sobre o geoplano foi do Dr. Caleb Gatteno em 1961. Ele foi reconhecido pelas inovações no ensino e na aprendizagem sobre a matemática. O geoplano chega como um recurso didático para o ensino da geometria plana elementar, entre outros.

Os geoplanos podem ser de vários tamanhos, de acordo com o n.º de pinos em cada lado, por exemplo, 10x10, ou seja, cada lado do geoplano tem 10 pinos (pregos).



Fonte: Imagem feita pelo autor

Fonte: http://portaldoprofessor.mec.gov.br/fichaTecnicaAula.html?aula=22374

Modelo de figuras construídas no Geoplano

Fonte: http://jardimfascinante.blogspot.com.br/2009/11/casinha-das-bonecas.html

Trabalhar com o Geoplano, tomando o lado do quadrado da malha como unidade de comprimento e a área desse quadrado como unidade de área.

- Construir figuras diferentes e encontrar a área e o perímetro de cada uma delas.
- Como se chama a linha que liga um pino ao outro?
- E o ponto ou pino de apoio de cada figura?
- Quantos lados têm cada figura? E quantos vértices?
- Como podemos encontrar á área sem contar os quadradinhos? (foram deduzidas algumas fórmulas de área quadrado, retângulo e triângulo)

2. Construir:

- Diferentes triângulos e desenhe na malha pontilhada.
- Diferentes figuras de 4 lados e desenhe na malha pontilhada.
- Diferentes retângulos e desenhe na malha pontilhada.

Obs.: Para esta atividade foi distribuir folhas em malha pontilhada. Fazer a atividade em conjunto, pois só há um Geoplano.

EXERCÍCIOS DE FIXAÇÃO: anexo 1

Nesta atividade foram avaliados os descritores:

D23 - Resolver problemas envolvendo a noção de perímetro de figuras planas, com ou sem malhas quadriculadas.

D26 - Resolver problemas envolvendo noção de área de figuras planas, com ou sem malhas quadriculadas.

DESENVOLVIMENTO

ATIVIDADE 2- Áreas e perímetros de figuras planas.

HABILIDADE RELACIONADA: H23 - Resolver problemas envolvendo a noção de perímetro de figuras planas, com ou sem malhas quadriculadas.

H 26 - Resolver problemas envolvendo noção de área de figuras planas, com ou sem malhas quadriculadas.

PRÉ-REQUISITOS: Conceito de medida e unidade de medida, operações com números racionais.

TEMPO DE DURAÇÃO: 100 minutos

RECURSOS EDUCACIONAIS UTILIZADOS: Folha de atividades, régua, trena e fita métrica e lápis.

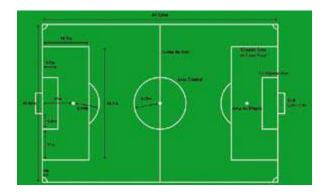
ORGANIZAÇÃO DA TURMA: Turma disposta em duplas, propiciando trabalho organizado e colaborativo.

OBJETIVOS: Apresentar ao aluno a diferença conceitual entre perímetro e área através das fórmulas deduzidas e das dimensões dadas.

METODOLOGIA ADOTADA:

Nossos alunos, em geral, têm dificuldade em entender a diferença entre os conceitos de área e perímetro, não conseguindo diferenciá-los conceitualmente. Na verdade, a grande maioria dos nossos alunos não entende exatamente por que utilizamos cm, m ou km para perímetro e cm², m² ou km² para área. O pouco conhecimento que eles possuem sobre esse assunto se resume, na verdade, às regras decoradas que, sabemos, não resistem a qualquer provocação retórica.

Podemos encontrar polígonos regulares e irregulares. Aqueles que chamamos de regulares possuem os lados e ângulos com as mesmas medidas. Já os irregulares são aqueles que possuem os lados ou os ângulos com medidas diferentes.


Vamos falar um pouco sobre perímetro e área, mas antes será apresentado um vídeo: Área das principais figuras planas, disponível em http://www.youtube.com/watch?v=d-QUFdLyHf8

Perímetro

O que é perímetro? E como o calculamos?

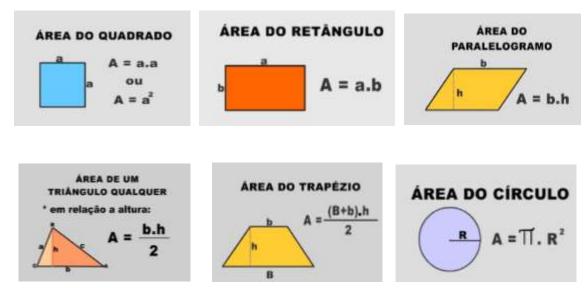
Perímetro é a medida de comprimento do contorno.

Observe um campo de futebol, o perímetro dele é o seu contorno.

Campo de futebol. Fonte: Wikicommons

Área

Área é a medida de uma superfície.


A área do campo de futebol é a medida de sua superfície (gramado).

Observe que se pegarmos outro campo de futebol e colocarmos em uma malha quadriculada, a sua área será equivalente à quantidade de quadradinho. Se cada quadrado for uma unidade de área, ele terá x unidade de área.

Usando instrumentos de medição

Com a fita métrica e/ou a trena medir a sala de aula, mesa, quadro, janela e outros que aparecer. Chamar atenção para a unidade de medida mais indicada (cm ou m), após calcular o perímetro e a área.

A seguir apresentar as fórmulas deduzidas a partir das atividades feitas em malha quadriculada.

Fonte: http://www.slideshare.net/flaber/areas-12625051#btnNext

Apresentar a seguir atividades a serem desenvolvidas com os alunos em sala de aula mostrando como este conteúdo está presente no seu cotidiano e exercícios com o objetivo de analisar a aprendizagem do aluno em relação ao conteúdo apresentado.

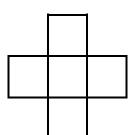
Propor aos alunos uma atividade para reposição de aula: Medir todos os canteiros da horta, fazer um esboço e calcular o perímetro e a área.

EXERCÍCIOS DE FIXAÇÃO – Utilizar exercícios do livro didático para fixação da aprendizagem.

Nesta atividade foram avaliados os descritores: D23 - Resolver problemas envolvendo a noção de perímetro de figuras planas, com ou sem malhas quadriculadas.

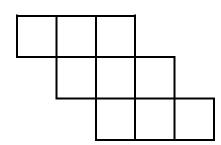
D26 - Resolver problemas envolvendo noção de área de figuras planas, com ou sem malhas quadriculadas.

ANEXOS

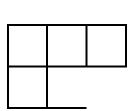

Anexo I

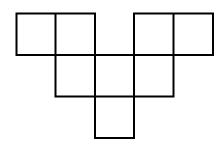
Atividade sobre perímetros e áreas

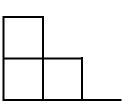
1 - Considere o pequeno quadrado, de lado igual a 1 cm, como unidade para calcular a área de cada figura. Calcule também o perímetro de cada uma delas em centímetros.

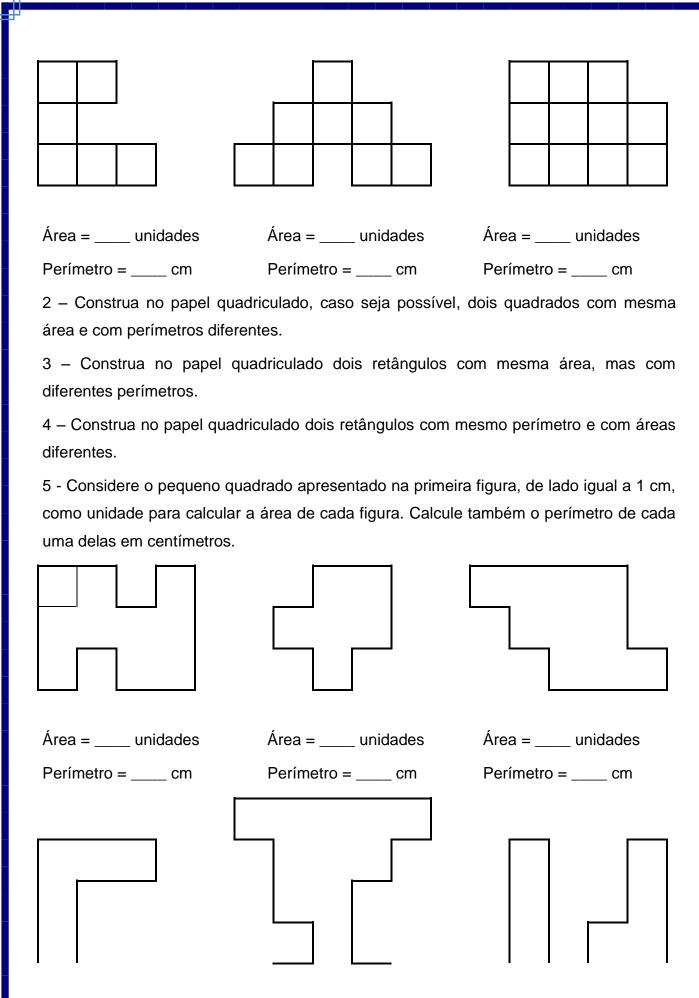

Área = ____ unidades

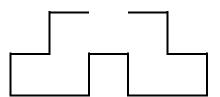
Perímetro = ____ cm


Área = ____ unidades


Perímetro = ____ cm




Área = ____ unidades


Perímetro = ____ cm

Área = ____ unidades

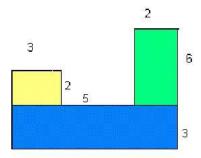
Área = ____ unidades

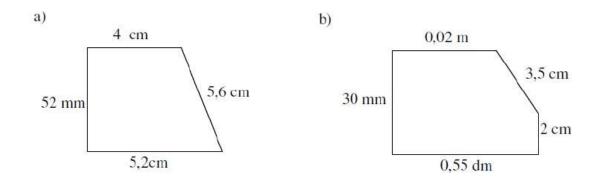
Área = ____ unidades

Perímetro = ____ cm

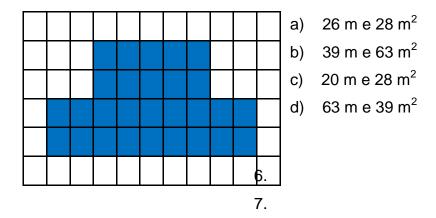
Perímetro = ____ cm

Perímetro = ____ cm


6 – Considere no papel quadriculado uma unidade de comprimento. Construa um retângulo cujo perímetro tem 24 unidades. Caso seja possível, construa outros retângulos cujo perímetro tem 24 unidades. Analise a área de cada um desses retângulos. Tais construções permitem a você formular alguma conjectura?


ANEXO II

Lista de exercícios sobre área e perímetro.


1. Determine a área da seguinte figura (em cm²):

- 2. Sabendo que a área de um quadrado é 36 cm². Qual é seu perímetro?
- 3. Calcule a área e o perímetro (em metros) dos retângulos descritos:
 - a) Altura = 24 e largura = 12,5
 - b) Altura = 14,2 e largura = 9,5
- 4. Determine o perímetro das figuras abaixo:

5. A horta da escola está representada na malha quadriculada abaixo, em que cada lado dos quadradinhos corresponde a 1,5 m. A horta será cercada de arame e coberta com sombrite. Quantos metros de arame serão utilizados para cercar a horta? Quantos metros quadrados de sombrite serão utilizados para cobrir a horta?

6. Uma piscina tem 10 m de comprimento, 7 m de largura e 1,80 m de profundidade. Quantos metros quadrados de azulejo serão necessários para revestir toda piscina?

AVALIAÇÃO

No decorrer das atividades foram analisados a interação, a participação e o envolvimento dos alunos ao assistirem o vídeo, a medição dos canteiros da horta e no desenvolvimento das atividades propostas. Foi feita avaliação individual com pontuação no final de cada conteúdo estudado contendo questões de acordo com os descritores do Currículo Mínimo, para verificar a aprendizagem e detectar as dificuldades.

Ao final de cada aula foram reservados alguns minutos para que cada aluno fizesse a auto avaliação sobre o assunto estudado naquele dia, onde era

avaliado o comportamento, procedimentos de estudo e conteúdos, atribuindo uma nota a si próprio.

"Cada pessoa que passa em nossa vida, passa sozinha, porque cada pessoa é única e nenhuma substitui a outra! Cada pessoa que passa em nossa vida passa sozinha e não nos deixa só porque deixa um pouco de si e leva um pouquinho de nós. Essa é a mais bela responsabilidade da vida e a prova de que as pessoas não se encontram por acaso."

(Charles Chaplin)

REFERÊNCIAS BIBLIOGRÁFICAS

A CONQUISTA DA MATEMÁTICA, 9º Ano/José RUY GIOVANNI JR, Benedicto CASTRUCCI. – Ed. Renovada – São Paulo: FTD, 2009.

ROTEIRO DE AÇÃO 3 — Áreas e Perímetros com papel quadriculado Curso de Aperfeiçoamento oferecido por CECIERJ referente ao 9º ano do Ensino Fundamental – 4º bimestre/2012 – disponível em http://projetoseeduc.cecierj.edu.br/ava22/course/view.php?id=39

Endereços eletrônicos acessados de 15/11/2012 a 25/11/2012

http://portaldoprofessor.mec.gov.br/fichaTecnicaAula.html?aula=22374

http://jardimfascinante.blogspot.com.br/2009/11/casinha-das-bonecas.html

http://www.youtube.com/watch?v=d-QUFdLyHf8

http://www.slideshare.net/flaber/areas-12625051#btnNext

http://projetoseeduc.cecierj.edu.br/ava22/pluginfile.php/12414/mod_resource/con

tent/3/MAT_9ano_polinomiosregulares_roteirodeacao3%20_DI.pdf?forcedownload=1