Formação Continuada Nova EJA

Plano de Ação unidade 19

Regional: Metropolitana VI

Tutor: Eli de Abreu

Plano de Aula: A Trigonometria no triângulo retângulo (NEJA).

Escola Estadual Compositor Luiz Carlos da Vila

Período: 400 minutos (divididos em oito aulas de 50 minutos) Responsável pelo plano: Prof. Sérgio da Silva Moreira

Público-alvo: Alunos do 2º Módulo NEJA.

Conteúdo: A trigonometria no triângulo retângulo.

Recursos necessários: Lousa e giz, caneta esferográfica, livro do aluno, vídeo aula no YouTube e Datashow.

INTRODUÇÃO

Iniciando a Unidade 19 do material pedagógico produzido pelo CECIERJ é de suma importância destacar os objetivos específicos da unidade:

- *Utilizar as razões trigonométricas para calcular o valor do seno, cosseno e tangente dos ângulos de 30°, 45°e 60°;
- *Resolver problemas do cotidiano, envolvendo as razões trigonométricas;
- *Interpretar situações que envolvam o uso das relações trigonométricas.
- *Calcular medidas desconhecidas utilizando as relações.
- *Identificar e usar corretamente as relações: seno, cosseno e tangente.

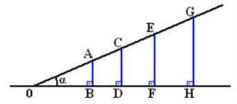
A palavra Trigonometria é formada por três radicais gregos: tri (três), gonos (ângulos) e metron (medir). Daí vem seu significado mais amplo: medida dos triângulos. Dizemos então que a trigonometria é parte da Matemática cujo objetivo é o calculo das medidas dos elementos do triângulo (lados e ângulos).

Inicialmente considerada como uma extensão da Geometria, a Trigonometria já era estuda pelos babilônios, que a utilizavam para resolver problemas práticos de Astronomia, de navegação e de agrimensura.

Aliás, foram os astrônomos que estabeleceram os fundamentos da Trigonometria, pois sabe-se que o famoso astrônomo grego Hiparco (190 a.C. - 125 a.C.) foi quem empregou pela primeira vez relações entre os lados e os ângulos de um triângulo retângulo. Hiparco, considerado o pai da Astronomia, é também considera do o iniciador da Trigonometria.

No século VIII, importantes trabalhos hindus foram traduzidos para árabe, contribuindo para as notáveis descobertas feitas pelos matemáticos árabes sobre a Trigonometria.

No século XV, foi construída a primeira tábua Trigonométrica por um matemático alemão, nascido na Baviera, chamado Purback. Porém o primeiro trabalho sistemático sobre a Trigonometria foi o Tratado dos Triângulos, escritos pelo matemático alemão Johann Muller, também chamado Regiomontanus. Sabe-se que Regiomontanus foi discípulo de Purback. Atualmente, a Trigonometria não se limita apenas a estudar os triângulos. Sua aplicação se estende a outros campos da Matemática, como a Análise, e a outros campos da atividade humana como a Eletricidade, a Mecânica, a Acústica, a Música, a Topografia, a Engenharia Civil.


DESENVOLVIMENTO

Estas aulas irão ser dedicadas, exclusivamente, à resolução de várias atividades sobre o assunto Trigonometria no triângulo retângulo. Para tal, eu o professor iniciarei as aulas explicando o propósito da mesma, ou seja, é retendido que no fim das resoluções de todas as atividades, os alunos compreendam a aplicabilidade de trigonometria no triângulo retângulo através de problemas, reconheçam as relações fundamentais da trigonometria: seno, cosseno e tangente e identifiquemr as relações seno e cosseno no triângulo qualquer, através das Leis do Seno e do Cosseno. As aulas serão desenvolvidas, a cada novo assunto, com a abordagem, quando possível de um problema para então apresentar o conteúdo desejado, sendo que na sequência será realizada a resolução de exercícios (exercícios resolvidos) para fixação do conteúdo, com isso será apresentado os exercícios propostos e também problemas que necessitem de interpretação e raciocínio para o seu desenvolvimento, donde será dado um tempo para que os alunos resolvam os mesmos ou então serão passados na forma de tarefa (quando não houver tempo para o termino destes em sala de ala).

Após passarei a correção das atividades propostas, pedindo para que os próprios alunos as resolvam no quadro, mostrando a solução encontrada e também verificando se algum aluno resolveu de forma diferente, para mostrar aos alunos que não existe somente um caminha para se chegar ao resultado procurado e sendo esclarecidas as dúvidas.

Razões trigonométricas no triângulo retângulo

Consideremos um ângulo agudo qualquer de medida α , levando-se em conta os infinitos triângulos retângulos que possuem o ângulo de medida α .

Os triângulos OAB, OCD, OEF e OGH são todos semelhantes. Logo:

$$\frac{BA}{OA} = \frac{DC}{OC} = \frac{FE}{OE} = \frac{HG}{OG} = r_1$$

$$\frac{OB}{OA} = \frac{OD}{OC} = \frac{OF}{OE} = \frac{OH}{OG} = r_2$$

$$\frac{\mathrm{BA}}{\mathrm{OB}} = \frac{\mathrm{DC}}{\mathrm{OD}} = \frac{\mathrm{FE}}{\mathrm{OF}} = \frac{\mathrm{HG}}{\mathrm{OH}} = \mathrm{r}_3$$

Respectivamente, as razões (trigonométricas) r1, r2, r3 são denominadas de: seno do ângulo α (sen α),

cosseno do ângulo α (cos α) e tangente do ângulo (tg α)

Cosseno do ângulo agudo α (cos α) é a razão entre a medida do cateto adjacente a α e a medida da hipotenusa.

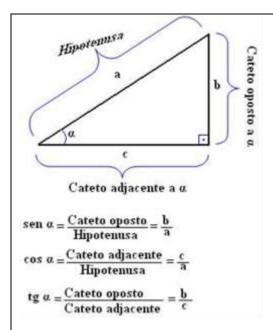
$$\cos \alpha = \frac{AB}{BC} = \frac{c}{a}$$
 or

cosa<u>= medida do cateto adjcente a a</u> medida da hipotenusa

Seno do ângulo α (sen α). A razão k é uma característica de cada ângulo α e seu valor é chamado de seno do ângulo α (sen α).

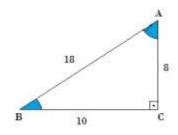
$$sen \alpha = \frac{AC}{BC} = \frac{b}{a}$$

ou

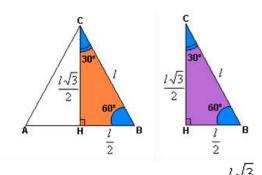

sen α <u>= medida do cateto oposto a α</u> medida da hipotenusa

Tangente do ângulo α (tg α) é razão entre a medida do cateto oposto a α e a medida do cateto adjacente a α .

$$tg\alpha = \frac{AC}{AB} = \frac{b}{c}$$


ou

tg $a = \frac{\text{medida do cateto oposto a } a}{\text{medida do cateto adjacente a } a}$


Exercício.

a)Determine os valores do seno, cosseno e tangente dos ângulos A e B no triângulo abaixo.

As razões trigonométricas de 30° , 45° e 60°

Considere as figuras:

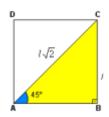
Triângulo equilátero de lado / e altura 2

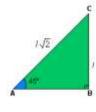
Aplicando as definições de seno, cosseno e tangente para os ângulos de 30°e 60°, temos:

$$sen 30^{\circ} = \frac{\frac{l}{2}}{l} = \frac{\lambda}{2} \cdot \frac{1}{\lambda} = \frac{1}{2}$$

$$sen 60^{\circ} = \frac{\frac{l\sqrt{3}}{2}}{l} = \frac{\chi\sqrt{3}}{2} \cdot \frac{1}{\lambda} = \frac{\sqrt{3}}{2}$$

$$cos 30^{\circ} = \frac{\frac{l\sqrt{3}}{2}}{l} = \frac{\chi\sqrt{3}}{2} \cdot \frac{1}{\lambda} = \frac{\sqrt{3}}{2}$$


$$cos 60^{\circ} = \frac{\frac{l}{2}}{l} = \frac{\lambda}{2} \cdot \frac{1}{\lambda} = \frac{1}{2}$$


$$tg 30^{\circ} = \frac{\frac{l}{2}}{\frac{l\sqrt{3}}{2}} = \frac{\chi \cdot 2}{2 \cdot 1 \cdot \sqrt{3}} = \frac{1}{\sqrt{3}} \cdot \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{3}}{3}$$

$$tg 60^{\circ} = \frac{\frac{l\sqrt{3}}{2}}{\frac{l}{2}} = \frac{\lambda\sqrt{3}}{2} \cdot \frac{\lambda}{\lambda} = \sqrt{3}$$

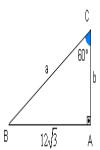
Seno, cosseno e tangente de 45°

Aplicando as definições de seno, cosseno e tangente para um ângulo de 45°, temos:

$$sen 45^{\circ} = \frac{l}{l\sqrt{2}} = \frac{\cancel{1}}{\cancel{1}\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$cos 45^{\circ} = \frac{l}{l\sqrt{2}} = \frac{\cancel{1}1}{\cancel{1}\sqrt{2}} = \frac{1}{\sqrt{2}} \cdot \frac{\sqrt{2}}{\sqrt{2}} = \frac{\sqrt{2}}{2}$$

$$tg 45^{\circ} = \frac{\cancel{1}}{\cancel{1}} = 1$$


Quadrado de lado l e diagonal $l \sqrt{2}$.

Resumindo. TABELA TRIGONOMÉTRICA DOS ÂNGULOS NOTÁVEIS

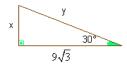
	30°	45°	60°
sen	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$
cos	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$
tan	$\frac{\sqrt{3}}{3}$	1.	√3

Exercício modelo.

Determine os valores dos lados a e b no triângulo abaixo.

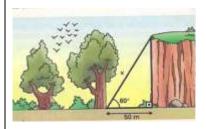
sen
$$60^{\circ} = \frac{12\sqrt{3}}{3}$$

$$\frac{\sqrt{3}}{2} = \frac{12\sqrt{3}}{a}$$


$$a=2.\frac{12\sqrt{3}}{\sqrt{3}}$$

$$\cos 60^\circ = \frac{b}{a}$$

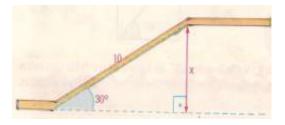
$$\cos 60^\circ = \frac{b}{2}$$


Exercício proposto.

Determine os valores dos lados x e y no triângulo abaixo.

Exercício modelo de aplicação de trigonometria.

Ângulo de elevação do pé de uma árvore ao topo de uma encosta é de 60º. Sabendo – se que a árvore está distante 50 m da base da encosta, que medida deve ter um cabo de aço para ligar a base da árvore ao topo da encosta?


Resolução.

$$\cos 60^{\circ} = \frac{50}{x}$$

$$\frac{1}{2} = \frac{50}{x}$$
 x= 50 . 2 x= 100 m

Exercício proposto.

Uma rampa lisa com 10 m de comprimento faz ângulo de 30º com o plano horizontal. Uma pessoa que sobe essa rampa inteira, eleva – se quantos metros verticalmente?

TABELA DE RAZÕES TRIGONOMÉTRICAS

Em muitos casos, para resolver problemas com triângulos retângulos é necessário conhecer as razões trigonométricas dos ângulos agudos do triângulo. Como a cada ângulo agudo está associado um único valor para o seno, para o cosseno e para a tangente, podemos elaborar uma tabela que nos forneça esses valores, evitando assim a necessidade de calculá-los a toda hora.

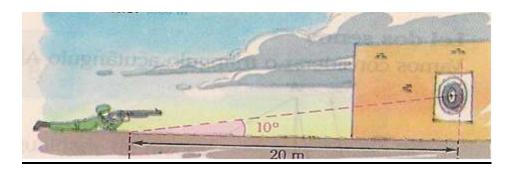
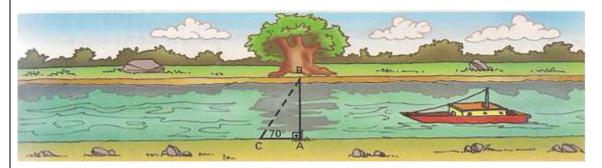

A tabela a seguir foi construída há séculos e nos dará os valores do seno, do cosseno e da tangente de ângulos de 1º até 89º, com aproximação até milésimos.

TABELA DE RAZÕES TRIGONOMÉTRICAS

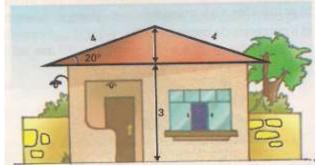
Ângulo	sen	cos	tg	Ångulo	sen	cos	tg	Ângulo	sen	cos	tg
10	0,017	1,000	0,017	31°	0,515	0,857	0,601	61°	0,875	0,485	1,804
2°	0,035	0,999	0,035	32°	0,530	0,848	0,625	62°	0,883	0,469	1,881
3°	0,052	0,999	0,052	33°	0,545	0,839	0,649	63°	0,891	0,454	1,963
40	0,070	0,998	0,070	34°	0,559	0,829	0,675	64°	0,899	0,438	2,050
5°	0,087	0,996	0,087	35°	0,574	0,819	0,700	65°	0,906	0,423	2,145
6°	0,105	0,995	0,105	36°	0,588	0,809	0,727	66°	0,914	0,407	2,246
- 7°	0,122	0,993	0,123	37°	0,602	0,799	0,754	67°	0,921	0,391	2,356
8°	0,139	0,990	0,141	38°	0,616	0,788	0,781	68°	0,927	0,375	2,475
9°	0,156	0,988	0,158	39°	0,629	0,777	0,810	69°	0,934	0,358	2,605
10°	0,174	0,985	0,176	40°	0,643	0,766	0,839	70°	0,940	0,342	2,747
11°	0,191	0,982	0,194	41°	0,656	0,755	0,869	71°	0,946	0,326	2,904
12°	0,208	0,978	0,213	42°	0,669	0,743	0,900	72°	0,951	0,309	3,078
13°	0,225	0,974	0,231	43°	0,682	0,731	0,933	73°	0,956	0,292	3,271
14°	0,242	0,970	0,249	44°	0,695	0,719	0,966	74°	0,961	0,276	3,487
15°	0,259	0,966	0,268	45°	0,707	0,707	1,000	75°	0,966	0,259	3,732
16°	0,276	0,961	0,287	46°	0,719	0,695	1,036	76°	0,970	0,242	4,011
17°	0,292	0,956	0,306	47°	0,731	0,682	1,072	77°	0,974	0,225	4,332
18°	0,309	0,951	0,325	48°	0,743	0,669	1,111	78°	0,978	0,208	4,705
19°	0,326	0,946	0,344	49°	0,755	0,656	1,150	79°	0,982	0,191	5,145
20°	0,342	0,940	0,364	50°	0,766	0,643	1,192	80°	0,985	0,174	5,671
21°	0,358	0,934	0,384	51°	0,777	0,629	1,235	81°	0,988	0,156	6,314
22°	0,375	0,927	0,404	52°	0,788	0,616	1,280	82°	0,990	0,139	7,115
23°	0,391	0,921	0,424	53°	0,799	0,602	1,327	83°	0,993	0,122	8,144
24°	0,407	0,914	0,445	54"	0,809	0,588	1,376	84°	0,995	0,105	9,514
25°	0,423	0,906	0,466	55°	0,819	0,574	1,428	85°	0,996	0,087	11,430
26°	0,438	0,899	0,488	56°	0,829	0,559	1,483	86°	0,998	0,070	14,301
27°	0,454	0,891	0,510	57°	0,839	0,545	1,540	87°	0,999	0,052	19,081
28°	0,469	0,883	0,532	58°	0,848	0,530	1,600	88°	0,999	0,035	28,636
29°	0,485	0,875	0,554	59°	0,857	0,515	1,664	89°	1,000	0,017	57,290
30°	0,500	0,866	0,577	60°	0,866	0,500	1,732				

Exercícios usando valores da tabela trigonométrica

Num exercício de tiro, o alvo se encontra numa parede cuja base está situada a 20 m do atirador. Sabendo que o atirador vê o alvo sob um ângulo de 10° em relação à horizontal, calcule a que distância o alvo se encontra do chão.(Dado: sen 10° = 0,17; cos 10° = 0,98 e tg 10° = 0,18).



Resolução


$$tg10^{\circ} = \frac{x}{20}$$
 $0.18 = \frac{x}{20}$ $x = 0.18 \cdot 20$ $x = 3.6$ m

Exercício proposto.

Use seus conhecimentos analisando a figura para determinar a largura do rio , verifique qual a melhor opção para este calculo, sendo: (Dado: sen $70^{\circ} = 0.94$; cos $70^{\circ} = 0.34$ e tg $70^{\circ} = 2.74$).

Na construção de um telhado, foram usadas telhas francesas e o "caimento" do telhado é de 20° em relação ao plano horizontal. Sabendo que, em cada lado da casa, foram construídos 6 m de telhado e que, até a laje do teto, a casa tem 3 m de altura, determine a que altura se encontra o ponto mais alto do telhado dessa casa.(Use: sen $20^{\circ} = 0.34$; cos $20^{\circ} = 0.94$; tg $20^{\circ} = 0.36$.)

Conclusão

Há situações, em que se deseja efetuar medidas envolvendo objetos que não são diretamente acessíveis.

Atualmente, a trigonometria não se limita apenas a estudar os triângulos. Sua aplicação se estende a outros campos da Matemática, como análise, e a outros campos da atividade humana, como a Eletricidade, a Mecânica, a acústica, a Música, a Topologia, a Engenharia Civil etc.

No nosso cotidiano, muitas vezes nos deparamos com situações que poderiam ser resolvidas se possuíssemos o conhecimento básico de trigonometria. Em muitas situações, poderemos chegar a conclusões e resolver determinados problemas apenas com o conhecimento desse conteúdo.

Espera-se que ao fim do estudo de relações trigonométricas no triângulo retângulo, os alunos compreendam e saibam usar os conhecimentos adquiridos em situações futuras de suas vidas seja no trabalho ou em concursos ou outra atividade qualquer.

Ponderações Finais.

Algumas atividades do livro do professor e do livro do aluno unidade 18 serão amplamente exploradas, analisadas e resolvidas com a supervisão do professor, na finalidade de buscar a interação e a socialização dos alunos no desenvolvimento das mesmas.

O processo de avaliação será contínuo e diagnóstico buscando aplicar os critérios avaliativos na aprendizagem do aluno, com o objetivo de recuperar os alunos, através de:

- Trabalhos individuais e em grupo;
- Exercícios Propostos;
- Testes individuais escritos;
- Problemas matemáticos.
- Listas de exercícios envolvendo aplicações da trigonometria no cotidiano.
- Durante as aulas observando o interesse e a participação do aluno.

Referências Bibliográficas:

- Livro Matemática e suas Tecnologias: Módulo 2, elaborado pelo CECIERJ.
- Iezzi, G.; Dolce, O.; Degenszajn, D. M.; Périgo R. e Almeida N. Matemática Ciências e Aplicações. Volume 1. Editora Atual.
- YOUSSEF, Antonio N.; SOARES, Elizabeth; FERNANDEZ, Vicente P.,
- Matemática Ensino Médio, Volume Único, Editora Scipione, 1° Ed., São Paulo, 2009.
- DANTE, Luiz R., Matemática Dante Ensino Médio, Volume Único, Editora
- Ática, 1° Ed., São Paulo, 2009.
- GUELLI, Oscar. Matemática Série Brasil Ensino Médio, Volume Único,
- Editora Ática, 1° Ed. São Paulo. 2003
- Curso de Matemática Volume Único
- Autores: Bianchini&Paccola Ed. Moderna
- Matemática Fundamental Volume Único
- Autores: Giovanni/Bonjorno&Givanni Jr. Ed. FTD
- Contexto&Aplicações Volume Único
- http://orbita.starmedia.com/~achouhp/matematica/trigonometria.htm
- http://www.brasilescola.com/matematica/trigonometria-no-triangulo-retangulo.htm
- http://tioheraclito.blogspot.com/2007/03/listas-de-trigonometria-no-tringulo.html