Formação Continuada em MATEMÁTICA Fundação CECIERJ/Consórcio CEDERJ

a ₁	a ₂	a ₃	a ₄	 a _n
a ₁	a ₁ +r	a ₁ + 2.r	a ₁ + 3.r	 a ₁ + (n - 1).r
a ₁	a ₁ . q	a ₁ . q ²	a ₁ . q ³	 a ₁ .q ⁿ⁻¹

Matemática 2ª série – 2º bimestre / 2014

Plano de Trabalho I – Regularidades Numéricas : Sequências e Matemática Financeira

Tarefa 1

Cursista: Nelson Gonçalves Dias Filho

Tutor: Edeson dos Anjos Silva

Sumário

INTRODUÇÃO	3
DESENVOLVIMENTO	4
AVALIAÇÃO	12
REFERÊNCIAS BIBLIOGRÁFICAS	. 13

INTRODUÇÃO

Para a execução deste plano de trabalho, serão necessários 12 tempos de aula para o seu desenvolvimento (aproximadamente 540 minutos) e, 2 tempos (aproximadamente 90minutos) para a sua respectiva avaliação de aprendizagem.

Tem-se por objetivo principal, permitir que os alunos percebam e entendam a aplicabilidade das "sequências", para interpretação, análise e resolução de problemas.

A ideia é colocar nossos alunos diante de uma Matemática que os instigue e ao mesmo tempo ofereça algumas das condições para a busca da compreensão do mundo.

É extremamente importante utilizarmos assuntos atraentes, com bastantes exemplos e, sempre que possível e, preferencialmente ligados ao cotidiano de todos.

DESENVOLVIMENTO

Descritores associados

- . H41 identificar regularidade em sequências de números;
- . H55 resolver problemas envolvendo problemas de P.A. e P.G, bem como a soma de seus termos.
- H54 resolver problemas envolvendo juros simples ou compostos..
 Resolver problemas utilizando logaritmos.

Atividade 1

<u>Habilidade relacionada</u>: Resolver problemas envolvendo sequências e P.A..

<u>Pré requisitos</u>: conhecimento das teorias inerentes ao assunto, resolução de cálculos em geral, entendendo, identificando e interpretando enunciado dos mais diversos problemas, principalmente os contextualizados.

<u>Tempo de duração</u>: 4 tempos de aula, aproximadamente 180 minutos.

Recursos educacionais utilizados: Xerox com resumo da matéria e com exercícios, laptop e datashow, para a apresentação de exemplos de sequências e definição de seus respectivos termos gerais, e ainda, a apresentação de alguns sites interessantes, inerentes ao assunto, como por exemplo apresentação da teleaula - telecurso.

Possivelmente para ser assistido e analisado extra classe.

Organização da turma: individual / duplas.

<u>Objetivos</u>: apresentar todos os assuntos que serão tratados dentro do tema principal e mostrar aos alunos a importância do tema que será estudado e sua aplicabilidade em assuntos do cotidiano.

<u>Metodologia adotada</u>: abordar os tópicos descritos conforme Roteiros de Ação 2 e 3, incluindo exercícios de fixação, conforme abaixo:

SEQUÊNCIAS

Sempre que estabelecemos uma ordem para os elementos de um conjunto, de tal forma que cada elemento seja associado a uma posição, temos uma seqüência ou sucessão.

Um elemento, ou termo, de uma seqüência é indicado por a_n . O índice n representa a posição ocupada pelo termo. Assim, na seqüência (a_1 , a_2 , a_3 ,, a_n), temos :

```
Por exemplo, na sequência (2, 8, 14, 20) de quatro termos, temos : a_1 = 2, a_2 = 8, a_3 = 14 e a_4 = 20
```

De acordo com o número de elementos, podemos ter sequências finitas ou infinitas.

Termo Geral de uma Seqüência

Algumas seqüências podem ser expressas mediante uma lei de formação. Isso significa que podemos obter um termo qualquer da seqüência a partir de uma expressão, que relaciona o valor do termo com sua posição. Essa expressão é denominada termo geral da seqüência.

PROGRESSÕES ARITMÉTICAS

Denomina-se progressão aritmética (PA) a seqüência em que se obtém cada termo, a partir do segundo, adicionando-se uma constante **r** ao termo anterior. Essa constante **r** chama-se **razão** da PA.

```
Exemplos: (2, 7, 12, 17, .....); (4, 7, 10, 13, 16, ....); (5, 5, 5, 5, .....);
```

$$(8, 5, 2, -1, -4, \ldots)$$

O Termo Geral da PA é dado pela fórmula $a_n = a_1 + (n - 1) \cdot r$

Exercícios:

- 1) Determine o valor de x para que (2x, 3x 1, 5x + 1) seja uma PA
- 2) Calcule três números em PA tais que sua soma seja 9 e seu produto 15.
- 3) Determine o vigésimo quarto termo da PA (3, 7, 11,) utilizando a fórmula do termo geral.
- 4) Na PA (100, 93, 86,) determine a posição do termo de valor 37.
- 5) Quantos termos tem a PA finita (4, 8, 12, 16, ..., 104)?
- 6) Determine o vigésimo primeiro termo da PA (1, ½, 0,)
- 7) Quantos múltiplos de 3 existem entre 1 e 100?

Propriedades:

Qualquer termo de uma PA, a partir do segundo, é média aritmética entre o anterior e o posterior

A soma de dois termos equidistantes dos extremos é igual à soma dos extremos

Soma dos Termos de uma PA

A soma \mathbf{S}_n dos \mathbf{n} termos de uma $\mathbf{P}\mathbf{A}$ é a média aritmética dos extremos, multiplicada pelo número de termos :

Sn =
$$(a_1 + a_n) n$$

2

Exercícios:

- 1) Calcule a soma dos vinte primeiros números pares positivos.
- 2) Dada a PA (5, 7, 9,, 23), determine a soma de seus termos.
- 3) Determine o último termo da PA (12, 10, 8,, an), sabendo que a soma de seus elementos é 36.

Atividade 2

<u>Habilidade relacionada</u>: Resolver problemas envolvendo P.G..

<u>Pré requisitos</u>: conhecimento das teorias inerentes ao assunto, resolução de cálculos em geral, entendendo, identificando e interpretando enunciado dos mais diversos problemas, principalmente os contextualizados.

<u>Tempo de duração</u>: 4 tempos de aula, aproximadamente 180 minutos.

Recursos educacionais utilizados: Xerox com resumo da matéria e com exercícios, laptop e datashow, para a apresentação de exemplos e definição de termo geral, e ainda, a apresentação de alguns sites interessantes, inerentes ao assunto, como por exemplo apresentação da teleaula - telecurso.

Possivelmente para ser assistido e analisado extra classe.

Organização da turma: individual / duplas.

<u>Objetivos</u>: apresentar todos os assuntos que serão tratados dentro do tema principal e mostrar aos alunos a importância do tema que será estudado e sua aplicabilidade em assuntos do cotidiano.

<u>Metodologia adotada</u>: abordar os tópicos descritos conforme Roteiros de Ação, incluindo exercícios de fixação, conforme abaixo.

PROGRESSÕES GEOMÉTRICAS

Denomina-se progressão geométrica (PG) a seqüência em que se obtém cada termo, a partir do segundo, multiplicando o anterior por uma constante q, chamada razão da PG.

Exemplos:

$$(3, 6, 12, 24, \ldots);$$

$$(-4, 8, -16, 32, -64,)$$

$$(8, 2, \frac{1}{2}, \frac{1}{8}, \dots)$$

O TERMO GERAL da PG é dado pela fórmula $\mathbf{a}_n = \mathbf{a}_1 \cdot \mathbf{q}^{n-1}$

Exercícios:

1) Obtenha os cinco primeiros termos de cada PG:

a)
$$a_1 = 4 e q = 2$$

b)
$$a_1 = -3 e q = -2$$

c)
$$a_1 = -1 e q = 3$$

d)
$$a_1 = 10 e q = 1/5$$

- 2) Determine o oitavo termo da PG (1, 3, 9,) utilizando a fórmula do termo geral.
- 3) na PG (4, 2, 1, 1/2,) determine a posição do termo 1/64.
- 4) Determine o primeiro termo da PG sabendo-se que a_7 = 31250 e q = 5

8

Soma dos Termos de uma PG

A soma **S**_n dos **n** termos de uma **PG** é:

$$Sn = a_1 \cdot \frac{q^{n} - 1}{q - 1}$$

Atividade 3

<u>Habilidade relacionada</u>: Resolver problemas envolvendo Matemática Financeira.

<u>Pré requisitos</u>: conhecimento das teorias inerentes ao assunto, resolução de cálculos em geral, entendendo, identificando e interpretando enunciado dos mais diversos problemas, principalmente os contextualizados.

Tempo de duração: 4 tempos de aula, aproximadamente 180 minutos.

Recursos educacionais utilizados : Xerox com resumo da matéria e com exercícios, laptop e datashow, para a apresentação de exemplos e definições diversas relacionadas ao assunto, e ainda, a apresentação de alguns sites interessantes, como por exemplo apresentação da teleaula - telecurso.

Organização da turma : individual / duplas.

<u>Objetivos</u>: apresentar todos os assuntos que serão tratados dentro do tema principal e mostrar aos alunos a importância do tema que será estudado e sua aplicabilidade em assuntos do cotidiano.

<u>Metodologia adotada</u>: abordar os tópicos descritos conforme Roteiros de Ação, incluindo exercícios de fixação, conforme abaixo.

Juro : é a quantia que se paga a título de compensação pelo uso do dinheiro emprestado;

<u>Capital(C)</u>: é o dinheiro sobre o qual recairão os juros;

<u>Taxa de Juro</u> (i) : é a razão entre o juro produzido e o capital empregado na unidade de tempo.

Exercício:

1) Para comprar um tênis de R\$ 70,00, Renato deu um cheque pré datado de 30 dias no valor de R\$ 74,20. Qual foi a taxa de juros cobrada ao mês?

<u>Unidade de tempo</u>: período financeiro ou período de capitalização, é o intervalo de tempo após o qual aplicam-se os juros sobre o capital inicial, somando-se os valores.

Vale lembrar que os juros sempre são estabelecidos segundo um período de tempo e uma porcentagem.

Montante (M) : é o capital resultante da soma do capital inicial (C) e do juro aplicado (j).

$$M = C + j$$

Juro simples: Chama-se operação financeira a juros simples aquela em que os juros são calculados apenas sobre o capital inicial para todo o número de períodos de capitalização.

$$j = c.i.n$$

$$M = c + j \rightarrow M = c + c.i.n \rightarrow M = c.(1+i.n)$$

(é importante que a taxa corresponda corretamente ao tempo)

Exercícios

- 1) Antonio empregou seu capital de R\$ 7.200,00 durante cinco anos a uma taxa de 40% ao ano. Calcule os juros produzidos,nestas condições, deste capital?
- 2) Calcule o capital que, aplicado a 30% ao ano, durante dois anos, produziu os juros de R\$ 12.000,00?
- 3) A que taxa mensal foi aplicado o capital de R\$ 25.000,00, durante oito meses, produzindo juros de R\$ 7.000,00?

Juro composto : chama-se juro composto a modalidade de transação em que, a cada período, os juros produzidos são aplicados sobre o capital do período anterior.

$$M = c \cdot (1 + i)^n$$

Onde **M** é o montante, **c** é o capital, **i** é a taxa de juro composto, **n** é o nº de períodos.

Exercícios:

- 1) Pedro aplicou R\$ 15.000,00 a juros compostos de 8% a.m.. Que quantia terá após seis meses de aplicação?
- 2) Qual o capital inicial que, investido a juro composto de 4% a.m., gera um montante de R\$ 6.749,18 durante o período de três meses de aplicação?
- 3) Fátima recebeu um montante de R\$ 130.480,00 por investir seu capital de R\$ 80.000,00 a juros compostos de 13% a.m.. Determine quanto tempo seu capital ficou investido.

(dados log 1,631 = 0,212 e log 1,13 = 0,053)

Inflação: Dizemos que há inflação quando os preços dos bens e serviços sofrem aumentos. Quando sofrem diminuição, dizemos que houve deflação.

Para resolvermos problemas que envolvam inflação, utilizamos o mesmo raciocínio usado para solucionar problemas de aumentos sucessivos e juros compostos, isto é, multiplicamos o valor do bem pelos fatores de aumento.

N = A.(1 + i), onde N é o valor com acréscimo; A é o valor do bem e, (1 + i) é o fator de aumento

AVALIAÇÃO

A avaliação deve ser realizada de maneira que, tanto professor quanto aluno, possam verificar o quanto se desenvolveu cada uma das competências relacionadas aos temas estudados.

Para tanto será utilizado um tempo de aula (45 minutos).

É também apropriado verificar os acertos dos alunos nas questões relacionados com o SAERJINHO. Este será outro método de avaliação. Mesmo não havendo tal avaliação, utilizamos banco de dados destes testes anteriormente aplicados.

A cada 2 meses submetemos nossos alunos a um simulado, onde constam questões desse nível e, pertinentes ao assunto ora abordado.

Será aplicada então uma avaliação escrita individual (90 minutos) para investigação da capacidade de utilização de conhecimentos adquiridos e raciocínio lógico para resolver problemas do cotidiano envolvendo todo o conteúdo dado, referente a logaritmos, como um todo.

REFERÊNCIAS BIBLIOGRÁFICAS

ROTEIROS DE AÇÃO – Função Polinomial do 1º grau – Curso de Aperfeiçoamento oferecido por CECIERJ referente ao 1º ano do Ensino Médio - 2ºbimestre/2012

DANTE, L.R. - Matemática contexto e aplicações: volume único: ensino médio – Rio de Janeiro: Ática.

Barreto Filho, Benigno, 1952 – Matemática aula por aula: volume único: ensino médio – São Paulo: FTD, 2000.

Bosquilha, Alessandra – Manual compacto de matemática : ensino médio – Rio de Janeiro : Rideel.

Tele aulas – TELECURSO

Endereços eletrônicos acessados e/ou citados ao longo do trabalho:

http://projetoseeduc.cecierj.edu.br/ava22/mod/folder/view.php?id=3241

http://www.somatematica.com.br/emedio/funcao2/funcao2.php

http://www.matematicasemmedo.com/aulas-em-powerpoint/ensino-medio/