FORMAÇÃO CONTINUADA EM MATEMÁTICA 9º ano -3º bimestre

PLANO DE TRABALHO 2

RAZÕES TRIGONOMÉTRICAS NO TRIÂNGULO RETÂNGULO CÍRCULO E CIRCUNFERÊNCIA

Colégio Estadual Raimundo de Magalhães Autora: Ana Cristina Ernandes Falcão Tutora: Maria Cláudia Padilha Tostes

Setembro-2014

SUMÁRIO

Introdução	3
Desenvolvimento	4
Avaliação 15	
Bibliografia16	5

1.Introdução

Este plano de trabalho tem por objetivo levar o aluno a despertar um novo conceito e aplicá-los em situações contextualizadas fazendo a relação da leitura com códigos matemáticos e o desenvolvimento do raciocínio lógico, visualizando o conceito dentro de seu contexto cotidiano.

Normalmente os alunos apresentam dificuldades diante das Razões Trigonométricas no triângulo Retângulo, por ser um conteúdo que envolve desenhos e ângulos. Com objetivo de sanar essa situação, apresentamos desafios mais próximos do seu cotidiano com a intenção de entender melhor o meio em que vive.

Na proposta de estudo desse tema recorreremos à apresentação da História da Matemática, os alunos devem perceber que as razões trigonométricas no círculo e na circunferência assim como a relação entre os lados e os ângulos de um triângulo retângulo era conhecida e aplicada a centenas de anos antes de Pitágoras, pelos egípcios e babilônios, por exemplo. Sugiro uma pesquisa histórica: é verdade que a civilização grega organizou a Geometria Elementar na forma que conhecemos hoje, mas o que sabiam as pessoas em civilizações anteriores?

Por meio da aplicação do conceito de razão e de semelhança de triângulos, obter relações entre ângulos e medidas dos lados de um triângulo retângulo que possibilitem resolver problemas junto à associação aos códigos matemáticos.

Para todo esse desenvolvimento serão necessários oito tempos de cinqüenta minutos e quatro tempos de cinqüenta minutos para a avaliação de aprendizagem.

2. Desenvolvimento

Atividade 1

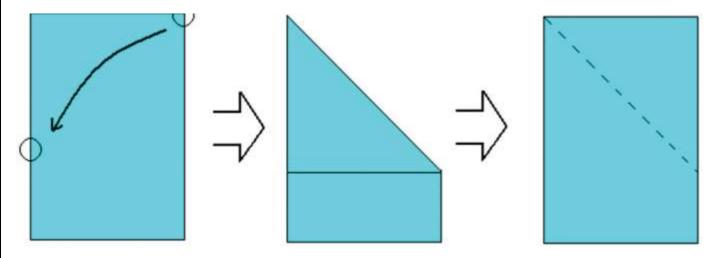
Habilidade Relacionada: H05 – Identificar figuras semelhantes mediante o reconhecimento de relações de proporcionalidade. H35 - Efetuar cálculos simples com valores aproximados de radicais.

Pré-requisitos: Identificar os lados de um triângulo retângulo; saber utilizar o transferidor e a régua para efetuar medições; efetuar cálculos com números reais; reconhecer triângulos semelhantes; determinar a medida de um ângulo interno de um triângulo, a partir da medida dos outros dois; saber aplicar o Teorema de Pitágoras.

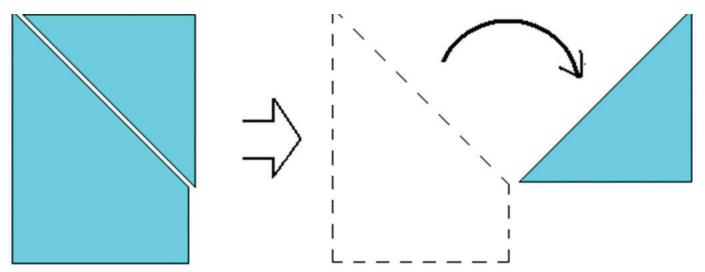
Tempo de duração: 100 minutos

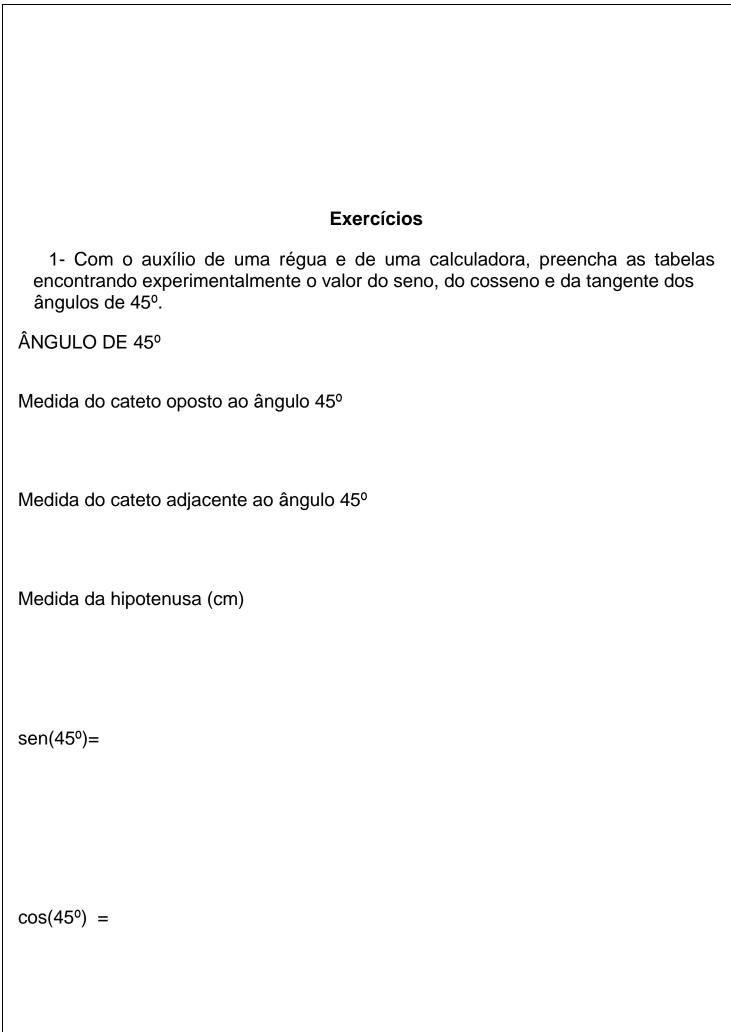
Recursos Educacionais Relacionados: Papel A4 branco ou colorido, transferidor, régua de 30 cm, caneta e calculadora que efetue cálculo de raízes quadradas.

Organização da Turma: Turma organizada em grupos de dois ou três alunos, propiciando trabalho organizado e colaborativo.


Objetivos: Aprofundar os conceitos de as razões trigonométricas em um triângulo retângulo. Calcular experimentalmente e analiticamente as razões trigonométricas dos ângulos notáveis.

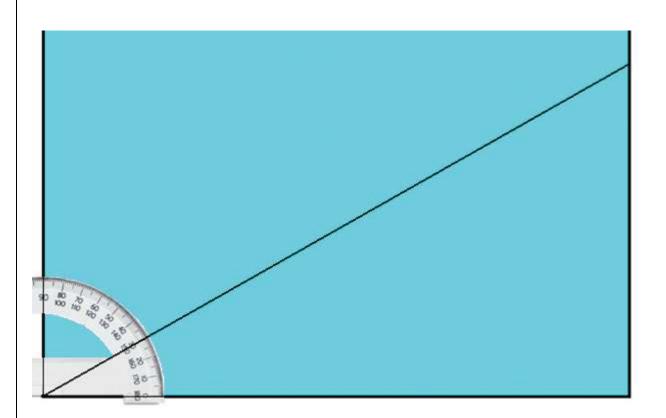
Metodologia Adotada: Construção da tabela dos ângulos de 30°, 45° e 60°, Com auxilio de triângulos e atividades xerocadas.


Atividade 1


Uma Estimativa Experimental para as Razões Trigonométricas do Ângulo de 45º

1. Utilizando uma folha de papel A4, com o lado menor localizado na posição inferior, pegue a ponta superior direita e leve-a até a margem lateral esquerda do papel, deixando toda a margem superior superposta com a margem lateral esquerda, como é mostrado na figura 1. Deixe bem marcada a dobra feita.

2. Com ajuda de uma régua, faça um corte no papel seguindo a direção deixada pela dobra, no sentido de baixo para cima, separando um triângulo. Veja figura 2.



 $tg(45^{\circ})=$

Atividade 1 -parte B

Uma Estimativa Experimental para as Razões Trigonométricas dos Ângulos 30º e 60º

Usando um transferidor e uma folha de papel A4, obtenha um ângulo de 30°. Como mostra a figura 3, trace uma linha transversal no papel a partir da marca feita.

Dobrando o papel na linha marcada, faça um corte e separe o triângulo retângulo. Posteriormente, marque com uma caneta os ângulos de 30º e 60º, como mostra a figura 4.

60°

Exercícios	
	na régua e de uma calculadora, preencha as tabelas a seguir, ntalmente o valor do seno, do cosseno e da tangente dos
ÂNGULC	DE 30°
Medida do cateto opos	to ao ângulo 30º
Medida do cateto adjad	cente ao ângulo 30º
Medida da hipotenusa	(cm)
sen(30°)	
cos(30°)	
tg(30°)	
Razões Trigonométric	as ângulo de 60º
sen(60°)	
cos(60°)	

tg(60°)		
ig(oo)		

- 2-Observe e compare os resultados encontrados para as razões trigonométricas dos ângulos de 30º e 60º. Você percebe alguma relação entre os valores encontrados?
 - a) Existe alguma relação entre o valor do sen(30°) e do cos(60°)? Que relação é essa?
 - b) E entre sen(60°) e cos(30°)? Que relação é essa?
- 3-. Discuta com os seus colegas e tente descobrir por que isso acontece. Registre suas conclusões.

ÂNGULO DE 30º

tg(30°)

tg(60°)

Atividade 2

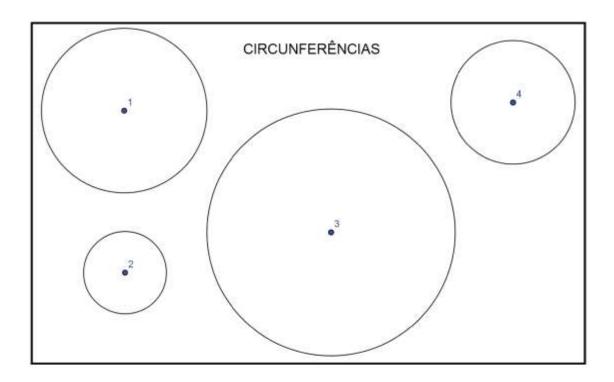
Habilidade Relacionada: Compreender a origem do número π e calcular aproximações com material manipulativo. Diferenciar circunferência e círculo.

Pré-requisitos: cálculos e medição com régua, aproximação de números decimais.

Tempo de duração: 100 minutos

Recursos Educacionais Relacionados: Folha de atividades, régua, papel barbante e calculadora.

Organização da Turma: Turma organizada em grupos de dois, propiciando trabalho organizado e colaborativo.


Objetivos: Levar o aluno a construir conhecimentos sobre círculo e circunferência, formas freqüentes no mundo material.

Metodologia Adotada: Medição do diâmetro e do raio de circunferências, para assim diferenciarmos o círculo da circunferência e acharmos o valor de pi.

Exercício 2

Para iniciar, vamos completar a tabela de acordo com o formulário de circunferências. Para isso, deve-se seguir as próximas orientações .

- Meça as circunferências da ficha (com uma casa decimal), envolvendo-as com barbante e, a seguir, esticando-os sobre a régua verifique o seu comprimento. Por fim você deve anotar o resultado na coluna da circunferência.
- Em seguida, meça o diâmetro, também com uma casa decimal, de cada uma delas e insira o resultado na tabela.
- Agora, utilizando uma calculadora, você deve dividir, em cada linha da tabela, o comprimento da circunferência pelo seu diâmetro e anotar o resultado na última coluna da tabela. Utilize duas casas decimais na resposta final.

CIRCUNFERÊNCIAS	COMPRIMENTO	DIÂMETRO	COMPRIMENTO DIÂMETRO
1			
2			
3			
4			

a.	Ocorreu algum fato interessante? Qual? Descreva-o! Verifique com seus co- legas se o mesmo aconteceu com eles?
b.	Você sabia que esses números que encontrou se aproximam do número conhecido em Matemática como π (pi)? Converse com seu professor a respeito disto!
C.	Volte à tabela, observe-a e escreva, aqui, o cálculo que você efetuou para encontrar os resultados expressos na última coluna.
d.	Vamos generalizar isso? Se o comprimento da circunferência que você mediu com o barbante for C e o diâmetro for d , escreva algebricamente a conta que você fez, percebendo que o resultado desta conta é π .

f.	Podemos relacionar diâmetro e raio de uma circunferência, não é verdade?
	Que relação é esta? Escreva-a algebricamente, chamando o diâmetro de d e o raio, de r.
g.	Retome a relação que você escreveu no item (e), substituindo d pela relação que encontrou no item anterior, completando a fórmula $C =$.
V	ocê já tinha visto esta fórmula antes? Quando?

Atividade 3

Habilidade Relacionada: H12-Resolver problemas envolvendo as razões trigonométricas no triângulo retângulo (seno, cosseno e Tangente dos ângulos de 30, 45 e 60 graus)

H11- Utilizar relações métricas no triângulo retângulo para resolver problemas significativos

Pré-requisitos: Geometria no triângulo retângulo

Tempo de duração: 100 minutos

Recursos Educacionais Relacionados: Folha de atividades, papel cartão, régua, transferidor, tesoura, calculadora, canudo, fita adesiva, pedra, barbante, fita métrica ou trena.

Organização da Turma: Turma organizada em grupos de dois ou três, propiciando trabalho organizado e colaborativo.

Objetivos: Introduzir o estudo da função tangente, utilizando a geometria para resolução de uma situação problema que envolve medição.

Metodologia Adotada: Nessa atividade objetivamos mostrar ao aluno a importância que as funções trigonométricas desempenham nas medidas indiretas de distâncias. Para isso vamos construir um teodolito improvisado.

3.Avaliação

As atividades contidas nesse plano de trabalho, contribuirão para composição da nota final dos alunos da seguinte forma:

As atividades 1,2 e 3 que serão realizadas em duplas ou em trios servirão de instrumentos avaliativos e terá valor de 10 pontos cada uma.

O Saerjinho terá valor de 20 pontos

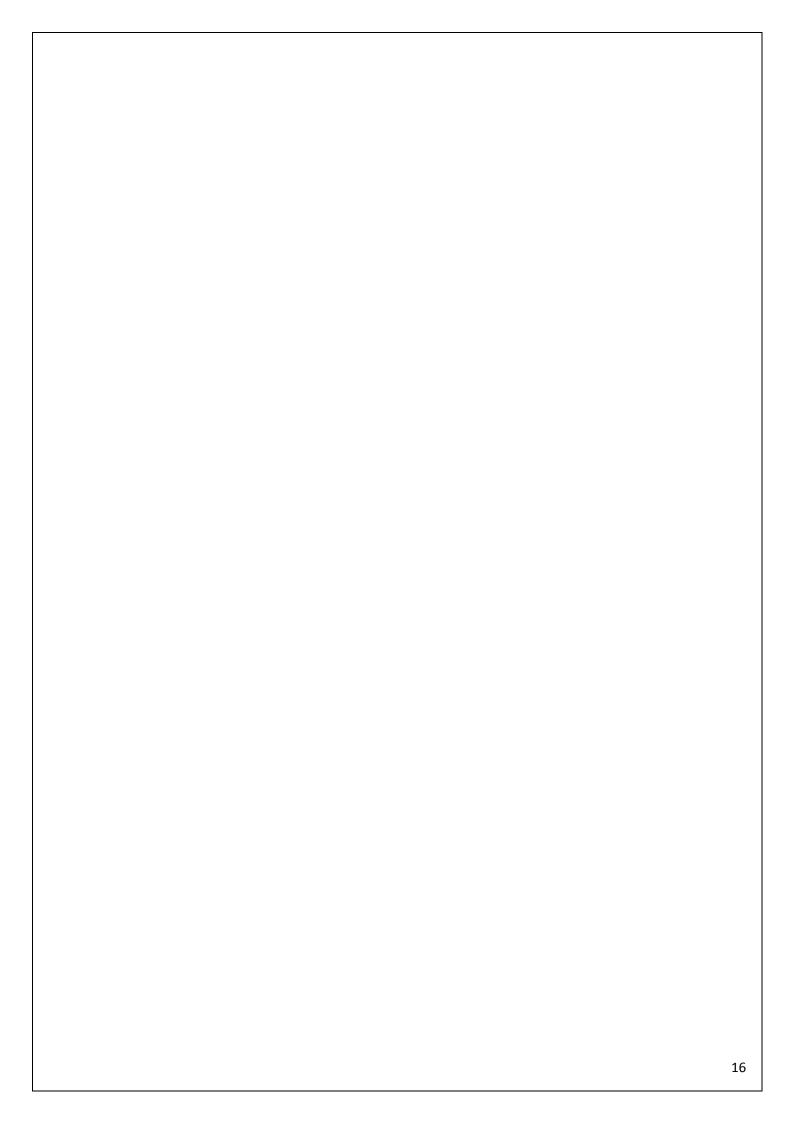
A avaliação será aplicada individualmente valerá 50 pontos

4. Referências Bibliográficas

Andrini, Álvaro. **Praticando a Matemática**:* 3 ºEdição.** SãoPaulo: Editora do Brasil, 2012. Souza, Joamir. **Vontade de Saber matemática**.*2 º Edição** São Paulo: FTD, 2012.

No Mundo da Matemágica. Disponível em: http://no-mundo-da-

<u>matemagica.blogspot.com.br/2013/07/exercicios-de-matematica-de-funcao-de-1.html</u>. Acesso em 24 de agosto de 2014


Seeduc.**Reforçoescolar.**2014.RiodeJaneiroDisponívelem:<<u>http://www.projetoseeduc.cecierj.edu.br/principal/reforço-escolar.php.</u> Acesso em: 07 setembro 2014

Conexão professor. **Atividades autorreguladas.** 2014. Disponível em:known.conexaoprofessor.rj.gov.br/dowloadas/cm/cm_69_10_9a_3.pdf Acesso em: 24 agosto 2014.

BRASIL. Ministério da Educação e do Desporto. Secretaria de Educação Fundamental. **Parâmetros Curriculares Nacionais: Matemática**. Brasília – DF: MEC/SEF, 1998.

ROTEIROS DE ACAO – circulo e circunferência e razões trigonométricas no triângulo retângulo.

http://projetoseeduc.cecierj.edu.br/ acessado em 08-09-2014.

