# FORMAÇÃO CONTINUADA EM MATEMÁTICA FUNDAÇÃO CECIERJ/CONSÓRCIO CEDERJ

# MATEMÁTICA 9º ANO - 3º BIMESTRE/2013 PLANO DE TRABALHO

FUNÇÕES

CURSISTA: DANIELE BATISTA DE ALVARENGA

TUTOR: DAIANA DA SILVA LEITE

# INTRODUÇÃO

O objetivo deste plano de trabalho é apresentar o conteúdo ao aluno de forma prática e clara, de modo que sua aprendizagem seja significativa e que o mesmo consiga fazer pontes entre o conhecimento matemático e situações vividas no cotidiano.

Ao trabalhar Plano Cartesiano e Funções temos a oportunidade de mostrar ao aluno a "vida" da matemática, pois são conteúdos de fácil adaptação com a realidade. Quando trabalhamos Plano Cartesiano temos o clássico exemplo do jogo Batalha Naval que a maioria dos alunos conhece e sabem jogar. Ao trabalharmos Funções do primeiro Grau temos como exemplo clássico a corrida de táxi e na Função do Segundo Grau podemos citar a altura de um chute a gol. Apesar de trabalhar superficialmente Funções do Segundo Grau é importante apresentá-la para os alunos.

O plano de trabalho foi organizado por conteúdo, trabalhando primeiramente plano cartesiano, em seguida o produto cartesiano, lei de formação e enfim, funções. Os exercícios estão bem práticos e foram incluídas questões do **SAERJINHO**. Embora não tenha colocado o jogo batalha naval em meu plano de trabalho o mesmo foi usado para introduzir o conteúdo, logo na primeira aula. Nesse bimestre não utilizei o livro didático dos alunos.

Quero destacar que a avaliação dos alunos será feita através de trabalho, teste e a prova será a do **SAERJINHO**, e essa maneira de avaliação é regra da escola.

#### **DESENVOLVIMENTO**

#### Atividade 1 - O Plano Cartesiano

#### Habilidades relacionadas:

- H02 Associar pontos no plano cartesiano às suas coordenadas e vice-versa.
- C1 Associar um ponto no plano cartesiano às suas coordenadas.
- C2 Associar as coordenadas a um ponto dado no plano cartesiano.

#### • Pré-requisitos:

Conhecer a ordenação dos números Reais na reta numérica.

# • Duração:

150 minutos/3 aulas

#### • Recursos educacionais utilizados:

Folha de aula.

# • Organização da turma:

Individual

# Objetivos:

Apresentar o Plano Cartesiano aos alunos.

#### Metodologia Adotada:

A aula teve início com uma breve partida de Batalha Naval para mostrar aos alunos a parte divertida do conteúdo a ser desenvolvido na aula.

O conteúdo da folha de aula, onde consta a parte teórica e exercícios relacionados ao conteúdo foi explicada, além disso, foram feitos outros exemplos que não constam na folha de aula só para alguns esclarecimentos. Após a explicação os alunos realizaram as atividades propostas e as mesmas foram corrigidas no quadro para que as dúvidas restantes fossem esclarecidas.

Segue abaixo o modelo da folha de aula:

Professora: Daniele Batista

# Plano Cartesiano

Números podem ser representados por pontos de uma reta. Essa representação geométrica é chamada **reta numérica real**.



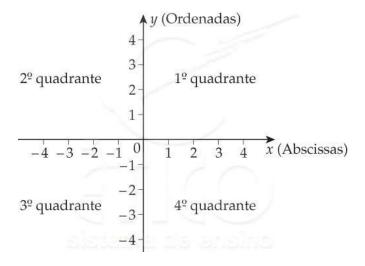
#### Lembre-se:

- Cada número real está associado a um único ponto da reta numérica real;
- Cada ponto da reta numérica real está associado a um único número real.

Chamaremos essa reta de eixo real e podemos definir:

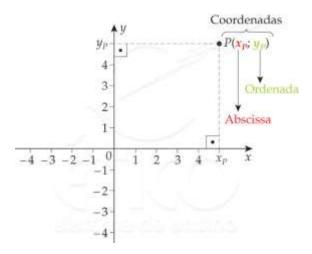
Dois eixos reais perpendiculares entre si e que se cruzam na origem determinam o plano cartesiano ou sistema ortogonal de coordenadas cartesianas.

Veja a construção de um sistema ortogonal:



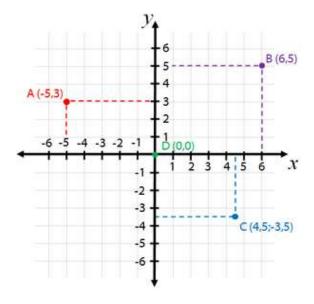
Esses eixos dividem o plano em quatro partes, chamadas **quadrantes**. O eixo representado pela letra x é o **eixo das abscissas** e o eixo representado pela letra y é o **eixo das ordenadas**.

Cada ponto do plano cartesiano é identificado por dois valores: um valor x (abscissa) e um valor y (ordenada), representados na forma de **par ordenado** (x; y), que recebe o nome de **coordenadas** do ponto.



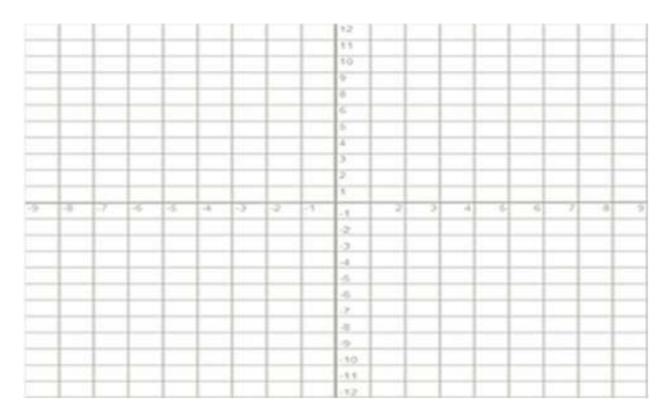
- Nos quadrantes 1 e 4, temos pontos com abscissas positivas, e nos quadrantes 2 e 3, temos abscissas negativas;
- Nos quadrantes 1 e 2 temos pontos com ordenadas positivas, e nos quadrantes 3 e 4, temos ordenadas negativas;
- Os pontos situados sobre o eixo x têm ordenadas iguais a zero, e os pontos situados sobre o eixo y, abscissas iguais a zero.

Veja a representação dos pontos no plano cartesiano:

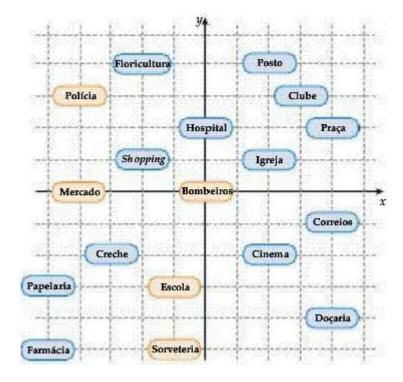


Agora, represente os pontos abaixo no plano cartesiano:

c- C(1, 3) f- F(-4, -2) i- I(2, -3)



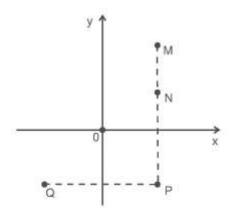
Complete a tabela com os pares ordenados que representam os estabelecimentos no gráfico:



| Estabelecimento | Par Ordenado |
|-----------------|--------------|
| Floricultura    |              |
| Farmácia        |              |
| Cinema          |              |
| Igreja          |              |
| Polícia         |              |
| Doçaria         |              |
| Creche          |              |
| Clube           |              |
| Hospital        |              |
| Papelaria       |              |
| Escola          |              |
| Shopping        |              |
| Bombeiros       |              |
| Sorveteria      |              |
| Correios        |              |
| Mercado         |              |
| Praça           |              |
| Posto           |              |

# Exercícios

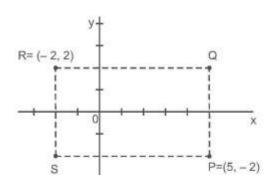
(MOB189SI) Observe a localização dos pontos M, N, P e Q no plano cartesiano representado abaixo.



O ponto de abcissa negativa é o

- A) M
- B) N C) P
- D) Q

(MOB228SI) Observe, no plano cartesiano abaixo, os pontos P, Q, R e S, que são os vértices de um retângulo.

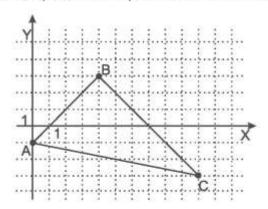


 $_{(MO8190SI)}$  As coordenadas cartesianas do ponto M são dadas por ( -3,4).

Qual é o quadrante ao qual o ponto M pertence?

- A) 1º
- B) 2°
- C) 3°
- D) 4°

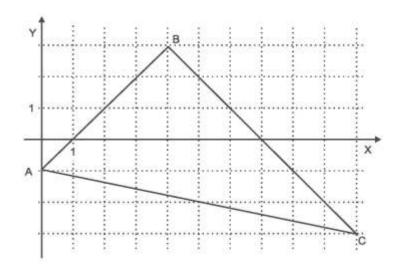
(M09132SI) Observe o triângulo ABC, representado no plano cartesiano abaixo.



De acordo com a figura, pode-se afirmar que

- A) o lado AB intercepta o eixo x no ponto (1,1).
- B) o lado BC intercepta o eixo x no ponto (7,0).
- C) as abscissas dos vértices A e C são negativas.
- D) as coordenadas do vértice A são (1,0).
- E) as coordenadas do ponto B são (3,4).

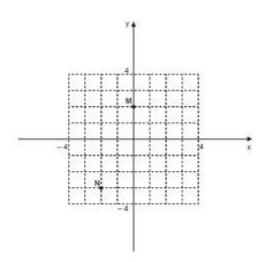
(MO8262SI) Observe o triângulo ABC representado no plano cartesiano abaixo.



De acordo com a figura, o ponto que corresponde ao vértice B desse triângulo tem como coordenadas

- A) (3,0)
- B) (3,4)
- C) (4,0)
- D) (4,3)

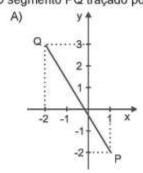
(MOBOB2SI) Observe este plano cartesiano, onde estão representados os pontos M e N.

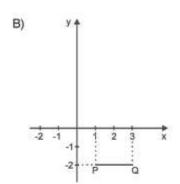


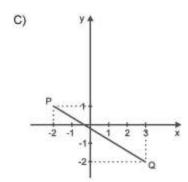
As coordenadas dos pontos M e N são, respectivamente,

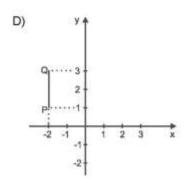
- A) (0, 2) e (-3, -2).
- B) (0, 2) e (-2,-3).
- C) (2,0) e (-3, -2).
- D) (2, 0) e (-2, -3).

(M08353SI) Maria traçou o segmento de extremidades P = (-2,1) e Q (3,-2) no plano cartesiano. O segmento PQ traçado por Maria está corretamente representado em

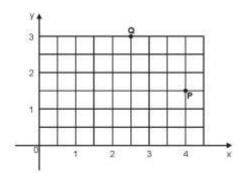








(M08118SI) Observe os pontos P e Q no plano cartesiano.



As coordenadas dos pontos P e Q são, respectivamente

A) 
$$(4, \frac{3}{2})$$
 e  $(\frac{5}{2}, 3)$ .

B) 
$$(\frac{3}{2}, 4)$$
 e  $(3, \frac{5}{2})$ .

#### Atividade 2 - Produto cartesiano

#### ■ Habilidades relacionadas:

- H02 Associar pontos no plano cartesiano às suas coordenadas e vice-versa.
- C1 Associar um ponto no plano cartesiano às suas coordenadas.
- C2 Associar as coordenadas a um ponto dado no plano cartesiano.

# • Pré-requisitos:

Conhecer o plano cartesiano e como marcar pontos no mesmo.

# • Duração:

100 minutos/2 aulas

#### • Recursos educacionais utilizados:

Folha de aula.

# Organização da turma:

Individual

# Objetivos:

Apresentar o Produto Cartesiano aos alunos.

# • Metodologia Adotada:

Todo conteúdo teórico presente na folha de aula foi explicado, alguns exemplos extras foram feitos no quadro a fim de sanar algumas dúvidas. Após a explicação os alunos realizaram as atividades propostas e as mesmas foram corrigidas no quadro.

Segue abaixo a folha de aula utilizada:

# C.I.E.P. Brizolão 355 Roquete Pinto

Professora: Daniele Batista

# Produto Cartesiano

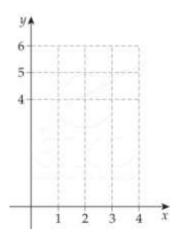
Sejam como exemplo, os conjuntos A e B:

$$A = \{1, 2, 3, 4\}$$
  $B = \{4, 5, 6\}$ 

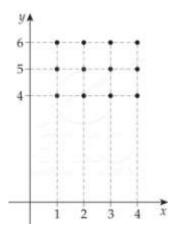
Vamos marcar os elementos do conjunto A no eixo x e os do conjunto B no eixo y:



Por esses valores assinalados, traçamos segmentos de retas perpendiculares aos eixos coordenados:



Cada cruzamento desses segmentos corresponde a um único ponto em nosso plano cartesiano:



Com base no que você viu anteriormente, enumere esses pontos:

\_\_\_\_\_

Dizemos que esses cruzamentos representam os elementos do **produto cartesiano** de A por B, isto é, representam o gráfico do produto cartesiano de A por B.

Podemos definir: Chama-se **produto cartesiano** de dois conjuntos não vazios, A e B, e representase A x B o conjunto formado pelos pares ordenados (x; y), em que x pertence ao conjunto A e y ao conjunto B.

$$A \times B = \{(x; y) / x \in A \in y \in y\}$$

Portanto, voltando ao nosso exemplo, determinamos A x B:

$$A \times B = \{(1, 4), (1, 5), (1, 6), (2, 4), (2, 5), (2, 6), (3, 4), (3, 5), (3, 6), (4, 4), (4, 5), (4, 6)\}$$

Essa forma de representação em que se nomeiam os elementos do conjunto é denominada **forma tabular**.

Propriedade: Sendo n(A) o número de elementos do conjunto A e n(B) o número de elementos do conjunto B e n(AxB) o número de elementos do produto cartesiano de A por B, temos:

$$n(A) \times n(B) = n(A \times B)$$

Observe o exemplo:

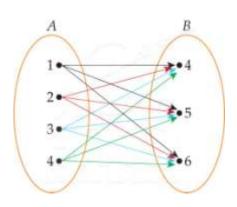
$$n(A) = 3$$
  $n(B) = 4$   $n(A \times B) = 3 \times 4 = 12$ 

O produto cartesiano não contempla a propriedade comutativa, isto é:

$$A \times B \neq B \times A$$

Podemos representar um conjunto por meio de uma linha fechada, que não se entrelaça. Os elementos pertencentes ao conjunto estão dentro da região limitada por essa linha.

Essa representação é chamada **diagrama de Euler-Venn**. Empregando esse tipo de diagrama, vamos representar os conjuntos  $A = \{1, 2, 3, 4\}$  e  $B = \{4, 5, 6\}$  e associar os elementos de A aos de B por meio de flechas.



# Exercícios

- 1) Dados os conjuntos abaixo, represente os produtos cartesianos pedidos na forma tabular, gráfica e diagrama Euler-Venn:
  - $A = \{1, 2, 3, 4\}$
  - $B = \{3, 5, 7\}$
  - $C = \{2, 4, 6\}$
  - $D = \{5, 6, 7\}$
  - a- A x B
  - b- BxC
  - c- C x A
  - d- DxB
  - e- AxD

# Atividade 3 – Lei de Formação

#### ■ Habilidades relacionadas:

- H02 Associar pontos no plano cartesiano às suas coordenadas e vice-versa.
- C1 Associar um ponto no plano cartesiano às suas coordenadas.
- C2 Associar as coordenadas a um ponto dado no plano cartesiano.

# • Pré-requisitos:

Conhecer o plano cartesiano e como marcar pontos no mesmo.

Resolução de equações do primeiro grau.

# • Duração:

100 minutos/2 aulas

#### Recursos educacionais utilizados:

Folha de aula.

# • Organização da turma:

Individual

# Objetivos:

Apresentar aos alunos o que é uma lei de formação.

# • Metodologia Adotada:

Todo conteúdo teórico presente na folha de aula foi explicado, alguns exemplos extras foram feitos no quadro a fim de sanar algumas dúvidas. Após a explicação os alunos realizaram as atividades propostas e as mesmas foram corrigidas no quadro.

Segue abaixo a folha de aula utilizada:

#### C.I.E.P. Brizolão 355 Roquete Pinto

Professora: Daniele Batista

# Lei de Formação

Além das representações que usamos até agora (tabular, gráfico e diagrama) as relações entre um conjunto e outro também podem ser expressas na forma de um conjunto que especifica uma propriedade entre os elementos x e y do par ordenado.

Essa propriedade informa como são formados os pares ordenados e, por esse motivo é chamada **lei de formação** ou **lei de correspondência**.

Veja os seguintes pares ordenados:

$$\{(4, 7), (3, 6), (-3, 0), (0, 3)\}$$

Nesse caso a lei de formação é dada por:

$$L = \{(x; y) \in Z / y = x + 3\}$$

Agora, vamos considerar os conjuntos A e B:

$$A = \{-2; -1; 0; 1; 2\}$$

$$B = \{-4; -3; -2; -1; 0; 1; 2; 3; 4\}$$

E a relação 
$$F = \{(x; y) \in A \times B / y = 2x - 1\}$$

Para determinar a forma tabular da relação F, devemos substituir cada elemento x do conjunto A na lei de formação e verificar se o valor encontrado para y pertence ao conjunto B.

Para x = -2, temos  $y = 2 \cdot (-2) - 1 = -5$ , e o elemento -5 pertence ao conjunto B, logo o par ordenado (-2; -5) pertence à relação F.

Observe a formação dos demais pares ordenados na tabela a seguir:

| X  | y = 2x - 1               | (x; y)   |                                                  |
|----|--------------------------|----------|--------------------------------------------------|
| -2 | 2 <b>•</b> (-2) − 1 = -5 | (-2, -5) | O elemento -5 $\in$ B, portanto (-2, -5) $\in$ F |
| -1 | 2• (-1) − 1 = -3         | (-1, 3)  | O elemento -3 $\in$ B, portanto (-1, -3) $\in$ F |
| 0  | 2• 0 − 1 = -1            | (0, -1)  | O elemento -1 $\in$ B, portanto $(0, -1) \in$ F  |
| 1  | 2•1−1=1                  | (1, 1)   | O elemento $1 \in B$ , portanto $(1, 1) \in F$   |
| 2  | 2 <b>•</b> 2 − 1 = 3     | (2, 3)   | O elemento $3 \in B$ , portanto $(2, 3) \in F$   |

Observe que os cinco pares determinados pertencem à relação F, dessa maneira fica determinada a forma tabular da relação:

$$F = \{(-2, -5), (-1, -3), (0, -1), (1, 1), (2, 3)\}$$

# Exercícios

1) Dado os conjuntos A e B e a lei de formação L, escreva a forma tabular da relação L.

$$A = \{3, 4, 5, 6\}$$

$$B = \{5, 6, 7, 9\}$$

$$L = \{(x; y) \in Z / y = x + 2\}$$

2) Dados os conjuntos F e G e a lei de formação T, escreva a forma tabular da relação T.

$$F = \{10, 11, 13, 15, 20\}$$

$$G = \{6, 8, 9, 11, 17\}$$

$$T = \{(x; y) \in Z / y = x - 4\}$$

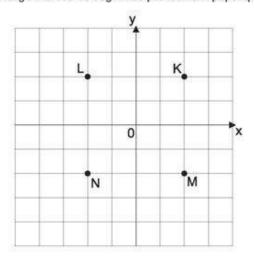
3) Dados os conjuntos H e I e a lei de formação T, escreva a forma tabular da relação Z.

$$H = \{2, 3, 4, 5, 6, 7\}$$

$$I = \{1, 2, 5, 7, 8, 10, 11, 12\}$$

$$Z = \{(x; y) \in Z / y = 2x - 3\}$$

(Mos16551) Jorge marcou os seguintes pontos num papel quadriculado:



As coordenadas do ponto N são:

- A) (-2, -2)
- B) (2, -2)
- C) (-2, 2)
- D) (2, 2)

# Atividade 4 – Funções

#### ■ Habilidades relacionadas:

H39 -Estabelecer correspondência entre duas grandezas, a partir de uma situação-problema.

# • Pré-requisitos:

Resolução de equações do primeiro grau.

Lei de formação.

Representação de pares ordenados no Plano Cartesiano.

# • Duração:

200 minutos/4 aulas

#### • Recursos educacionais utilizados:

Folha de aula.

# Organização da turma:

Individual

# Objetivos:

Apresentar aos alunos o que é uma Função e como podemos utilizá-la em várias situações do cotidiano.

# • Metodologia Adotada:

Todo conteúdo teórico presente na folha de aula foi explicado, alguns exemplos extras foram feitos no quadro a fim de sanar algumas dúvidas Os alunos também sugeriram algumas situações.. Após a explicação os alunos realizaram as atividades propostas e as mesmas foram corrigidas no quadro.

Segue abaixo a folha de aula utilizada:

C.I.E.P. Brizolão 355 Roquete Pinto.

Professora: Daniele Batista

# **FUNÇÕES**

O exercício da professora

Daniele é professora. Para exercita-se, costuma correr diariamente, mantendo um ritmo de 6 km por hora. Quantos metros ela corre a cada minuto?

Como 6km = 6000m e 1h = 60min, Daniele percorre 6000 metros em 60 minutos, o que dá 100 metros a cada minuto.

Veja as distâncias que ela percorre conforme o tempo de corrida:

| Tempo (min)   | 15   | 20   | 30   | 45   | 50   | 60   | 75   | 80   | 90   |
|---------------|------|------|------|------|------|------|------|------|------|
| Distância (m) | 1500 | 2000 | 3000 | 4500 | 5000 | 6000 | 7500 | 8000 | 9000 |

# Notação de Função

No problema proposto acima, há uma correspondência entre o tempo e distância percorrida por Daniele em sua corrida diária. A cada tempo corresponde uma única distancia.

A distância percorrida é *função* do tempo da corrida, porque para cada valor do tempo fica determinado um único valor da distância.

Nesse exemplo, x representa o tempo em minutos e y representa a distância em metros. Então temo:

Dizemos que y é a função de x dada pela fórmula y = 100x.

Note que a cada valor de x corresponde um único valor de y. Por exemplo:

Quando há correspondência entre duas grandezas x e y, de modo que para cada valor de x fica determinado um único valor de y, dizemos que y é *função* de x.

#### **Exercícios**

- 1) Um carro está viajando a 100km por hora.
  - a) Que distância ele percorre em 2 horas?
  - b) Se y representa o número de quilômetros que ele percorre em x horas, qual é a fórmula para calcular y?
  - c) Que distância ele percorre em 90 minutos?

- 2) Um professor propõe a sua classe de 40 alunos um exercício desafio, comprometendo-se a dividir um prêmio de R\$120,00 entre os acertadores.
  - a- Complete a tabela:

| Nº de acertadores         | 1 | 2 | 5 |       |      | 40 |
|---------------------------|---|---|---|-------|------|----|
| Prêmio para cada um (R\$) |   |   |   | 15,00 | 6,00 |    |

#### A notação f(x)

Podemos usar a notação f(x) para representar uma função de x. A função citada no exemplo da professora, que era  $y = 100 \cdot x$  poderá ser escrita com:

$$f(x) = 100 - x$$

Vejamos alguns exemplos:

$$\Rightarrow f(x) = \frac{1+2x}{2+x}$$

a) Qual o valor de f para x = 8?

$$f(8) = \frac{1+2\cdot 8}{2+8} = \frac{1+16}{10} = \frac{17}{10} = 1,7$$

- b) Quanto é f(3)?
  - f(3) é o valor da função para x = 3.

$$f(3) = \frac{1+2 \cdot 3}{2+3} = \frac{1+6}{5} = \frac{7}{5} = 1,4$$

# **Exercícios**

- 3) Contando a partir de certo instante, à distância percorrida por um carro é função do tempo decorrido em x minutos. Em x minutos ele percorre a distância f(x) metros, dada pela fórmula  $f(x) = 10x^2 + 1000x$ .
  - a- Calcule a distância percorrida em 10 minutos.
  - b- Calcule f(60) e dê uma interpretação para o resultado.
  - c- Em quanto tempo o carro terá percorrido 200 quilômetros?
- 4) O volume de água num recipiente cilíndrico é função da altura da água. Se a altura é x centímetros, o volume f(x) litros, dado por f(x) = (0,10)x.
  - a- Qual é o volume de água se a altura é 15cm?
  - b- Quanto é f(10)? O que representa?
  - c- Qual deve ser a altura para haver 2L de água no recipiente?
- 5) Dada a função f(x) = 2x + 3, calcule:
  - a- f(5)

```
b- f(10)
```

6) Dada a função  $f(x) = 3x^2 - 7x + 15$ , calcule:

a- 
$$f(0) - f(1) + f(-1)$$

b- 
$$f(4) - f(2) - f(5)$$

7) Dada à função do  $1^{\circ}$  grau F(x) = (1 - 5x). Determinar:

- a. F(0)
- b. F(-1)
- c. F(1/5)
- d. F(-1/5)

8) Considere a Função do  $1^{\circ}$  Grau F(x) = -3x + 2. Determine os valores de x para que se tenha:

a. 
$$F(x) = 0$$

b. 
$$F(x) = 11$$

c. 
$$F(x) = -1/2$$

9) Dada a função F(x) = (ax + 2), determine o valor de a para que se tenha F(4) = 22

**10)** Dada a função 
$$F(x) = ax + b$$
 e sabendo-se que  $F(3) = 5$  e  $F(-2) = -5$  calcule  $F(1/2)$ 

- **11)** Um vendedor recebe mensalmente um salário composto de duas partes: uma parte fixa, no valor de \$ 1.000,00 e uma parte variável que corresponde a uma comissão de 18% do total de vendas que ele fez durante o mês.
- a. Expressar a função que representa seu salário mensal.
- b. Calcular o salário do vendedor durante um mês, sabendo-se que vendeu \$10.000,00 em produtos.
- **12)** A cetesb detectou uma certa companhia jogando ácido sulfúrico no Rio Tiete, multou-a em \$ 125.000,00, mais \$ 1.000,00 por dia até que a companhia se ajustasse às normas legais que regulamentam os índices de poluição. Expresse o total de multa como função em numero de dias em que a companhia continuou violando as normas.
- **13)** Em algumas cidades você pode alugar um carro \$ 154 por dia mais um adicional de \$16,00 por km. Determine a função por um dia e esboce no gráfico. Calcule o preço para se alugar por um dia e dirigi-lo por 200 km
- **14)** Uma companhia de gás irá pagar para um proprietário de terra \$ 15.000,00 pelo direito de perfurar a terra para encontrar gás natural, e \$ 0,3 para cada mil pés cúbicos de gás extraído. Expresse o total que o proprietário irá receber com função da quantidade de gás extraído.

- **15)** Em 1998, um paciente pagou \$ 300,00 por um dia em um quarto de hospital semiprivativo e \$ 1.500,00 por uma operação de apêndice. Expresse o total pago pela cirurgia como função do número de dias em que o paciente ficou internado.
- **16)** O preço a ser pago por uma corrida de táxi inclui uma parcela fixa, denominada bandeirada, e uma parcela que depende da distância percorrida. Se a bandeirada custa R\$5,50 e cada quilômetro rodado custa R\$ 0,90, calcule:
- a. o preço de uma corrida de 10 km.
- b. a distância percorrida por um passageiro que pagou R\$ 19,00 pela corrida.
- **17)** Na revelação de um filme, uma óptica calcula o preço a ser cobrado usando a fórmula P =12,00 + 0,65n, onde P é o preço,em reais, a ser cobrado e n o número de fotos reveladas do filme.
- a. Quanto pagarei se forem reveladas 22 fotos do meu filme?
- b. Se paguei a quantia de R\$ 33,45 pela revelação, qual o total de fotos reveladas?
- **18)** O preço a ser pago por uma corrida de táxi inclui uma parcela fixa, denominada bandeirada, e uma parcela que depende da distância percorrida. Se a bandeirada custa R\$3,44 e cada quilômetro rodado custa R\$ 0,86, calcule:
- a. o preço de uma corrida de 11 km;
- b. a distância percorrida por um passageiro que pagou R\$ 21,50 pela corrida.
- **19)** Um fabricante usa como política de vendas, colocar seu produto ao início de janeiro ao preço p e aumentar mensalmente esse preço de 3,00. Em 1 de setembro esse preço passou a R\$ 54,00. Nestas condições determinar:
- a. O preço inicial em janeiro
- b. Qual será o preço em dezembro

(M100054ES) O custo C, em reais, para a fabricação de x unidades de certo produto é determinada pela expressão C = 240 + 3x.

Qual é o custo para a fabricação de 120 unidades desse produto?

- A) 360 reais.
- B) 600 reais.
- C) 720 reais.
- D) 1 080 reais.
- E) 9 600 reais.

(M100233ES) Um avião consome 400 litros de combustível na decolagem, 400 litros no pouso, e 400 litros em cada hora de voo. Em uma certa viagem esse avião gastou 2 000 litros de combustível. Quanto tempo durou essa viagem?

- A) 8 horas.
- B) 5 horas.
- C) 4 horas.
- D) 3 horas.
- E) 2 horas.

(M100333ES) O dono de um estabelecimento alugou uma máquina por uma taxa fixa de R\$ 80,00 mais 2% sobre o valor total de vendas. O custo mensal do aluguel da máquina pode ser calculado pela função f(x) = 0,02x + 80, onde x indica a quantia, em reais, de vendas no mês.

Sabendo que o estabelecimento vendeu R\$ 30 000,00 este mês, qual é o valor a ser pago pelo aluguel dessa máquina?

- A) R\$ 80,00
- B) R\$ 598,40
- C) R\$ 601,60
- D) R\$ 600,00
- E) R\$ 680,00

(M100104EX) Um técnico em computadores, recebe mensalmente um salário de R\$ 500,00 mais uma comissão de R\$ 10,00, por cada atendimento realizado. Em um determinado mês ele prestou 15 atendimentos.

Qual foi o salário desse funcionário nesse mês?

- A) R\$ 150,00
- B) R\$ 350.00
- C) R\$ 510.00
- D) R\$ 525,00
- E) R\$ 650,00

(M090331ES) Uma fábrica tem um custo de produção composto de duas partes: um custo fixo de R\$ 380,00 mensais e um custo variado de 35 reais por peça produzida. Esse mês ela gastou R\$ 2.546,00 com a produção dessas peças.

Qual a expressão que permite calcular a quantidade x de peças produzidas no mês?

- A) 35x = 2546
- B) 380x = 2546
- C) 35x + 380= 2 546
- D) 380x + 35 = 2546

(M090200A9) Para fazer "x" docinhos, Geralda gastou R\$ 20,00 com material. Cada um desses docinhos é vendido por R\$ 0,15. Em um determinado mês, ela lucrou R\$ 400,00 com a venda desses docinhos.

A equação que fornece o número de docinhos vendidos nesse mês é

- A) 0.15x + 20 = 400
- B) 0.15x 20 = 400
- C) 20x + 0.15 = 400
- D) 20x 0.15 = 400

(M100052ES) Veja a publicidade do Pesque-Pague do Juca.

Pesque-Pague do Juca.
Pesque seu próprio almoço!
Apenas 8 reais pelo aluguel do equipamento e
6 reais por Kg de peixe pescado.

Jorge foi ao Pesque-Pague do Juca e, ao final, pagou um total de 50 reais.

Quantos quilogramas de peixe Jorge pescou?

- A) 5,5
- B) 7
- C) 12,25
- D) 16.3
- E) 36

# **AVALIAÇÃO**

A avaliação do aluno será feita através de sua participação durante as aulas, bem como a correção de uma lista de exercícios, um teste bimestral, que é um simulado com questões do banco de questões do **SAERJINHO** e a nota da prova do **SAERJINHO**. Como foi dito anteriormente a escola possui regras de avaliação e as mesmas devem ser seguidas por mim.

Cada instrumento citado acima vale 10 pontos e a nota final é obtida pela média aritmética das três notas obtidas pelo aluno.

#### Referências

MATRIZ DE REFERÊNCIA SAERJINHO 2012. Disponível em: < http://projetoseeduc.cecierj.edu.br/ava22>

PAIVA, ASSIS, FERRITE. Beto, Leo, Odimar. Matemática e suas tecnologias. Editora: Saraiva, 2012.

**ROTEIROS DE AÇÃO e TEXTOS – Funções –** Curso de Aperfeiçoamento oferecido por CECIERJ referente ao 9º ano do Ensino Fundamental – 2º bimestre – disponível em <a href="http://projetoseeduc.cecierj.edu.br/ava22">http://projetoseeduc.cecierj.edu.br/ava22</a>.